Skip to main content

Advertisement

Log in

OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel nanoparticles-based brain drug delivery system made of hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) which was surface functionalized with transferrin antibody (OX26) was prepared. Hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) was synthesized, characterized and applied to prepare nanoparticles by means of double emulsion solvent evaporation technique. Transmission electron micrograph and dynamic light scattering showed that nanoparticles had a round and regular shape with a mean diameter of 170 ± 20 nm. Surface chemical composition was detected by X-ray photoelectron spectroscopy. Endomorphins, as a model drug, was encapsulated in the nanoparticles. In vitro drug release study showed that endomorphins was released continuously for 72 h. Cellular uptake study showed that the uptake of nanoparticles by the brain microvascular endothelial cells was both time- and concentration-dependant. Further uptake inhibition study indicated that the uptake of nanoparticles was via a caveolae-mediated endocytic pathway. In vivo endomorphins brain delivery ability was evaluated based upon the rat model of chronic constriction injury of sciatic nerve. OX26 modified nanoparticles had achieved better analgesic effects, compared with other groups. Thus, OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles may be a promising brain drug delivery carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Begley DJ, Brightman MW. Structural and functional aspects of the blood–brain barrier. Prog Drug Res. 2003;61:39–78.

    CAS  Google Scholar 

  2. Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Achim CL, et al. Blood–brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol. 1999;155:1915–27.

    Article  CAS  Google Scholar 

  3. Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38:323–37.

    Article  CAS  Google Scholar 

  4. Abbott NJ. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today Technol. 2004;1:407–16.

    Article  CAS  Google Scholar 

  5. Teichberg VI. From the liver to the brain across the blood–brain barrier. Proc Natl Acad Sci USA. 2007;104:7315–6.

    Article  CAS  Google Scholar 

  6. Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2:3–14.

    Article  Google Scholar 

  7. Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem. 1980;23:682–4.

    Article  CAS  Google Scholar 

  8. Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron. 2002;36:555–8.

    Article  CAS  Google Scholar 

  9. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7:41–53.

    Article  CAS  Google Scholar 

  10. Calvo P, Gouritin B, Chacun H, Georgin D, Fattal E, Couvreur P, et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res. 2001;18:1157–66.

    Article  CAS  Google Scholar 

  11. Manoj R, Tracey B, Jennifer L, Ayman EK, Joanne B. Current advances in delivery of biotherapeutics across the blood–brain barrier. Curr Drug Discov Technol. 2011;8:87–101.

    Article  Google Scholar 

  12. Kuo YC, Lin PI, Wang CC. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles. Nanomedicine. 2011;6:1011–26.

    Article  CAS  Google Scholar 

  13. Huwyler J, Wu DF, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA. 1996;24:14164–9.

    Article  Google Scholar 

  14. Zhang Y, Calon F, Zhu C, Boado RJ, Pardridge WM. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther. 2003;14:1–12.

    Article  Google Scholar 

  15. Karatas H, Aktas Y, Bodur E, Yemisci M, Caban S, Vural A, et al. A nanomedicine transports a peptide caspase-3 inhibitor across the blood–brain barrier and provides neuroprotection. J Neurosci. 2009;29:13761–9.

    Article  CAS  Google Scholar 

  16. Deeken JF, Loscher W. The blood–brain barrier and cancer: transporters, treatment, and trojan horses. Clin Cancer Res. 2007;13:1663–74.

    Article  CAS  Google Scholar 

  17. Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm. 2009;71:251–6.

    Article  CAS  Google Scholar 

  18. Chang J, Jallouli Y, Kroubi M, Yuan XB, Feng W, Betbeder D, et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. Int J Pharmaceut. 2009;379:285–92.

    Article  CAS  Google Scholar 

  19. Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso MJ. Poly(lactic acid)–poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release. 2001;75:211–24.

    Article  CAS  Google Scholar 

  20. Li Y, Ogris M, Wagner E, Pelisek J, Ruffer M. Nanoparticles bearing polyethyleneglycol-coupled transferrin as gene carriers: preparation and in vitro evaluation. Int J Pharmaceut. 2003;259:93–101.

    Article  CAS  Google Scholar 

  21. Betancourt T, Shah K, Brannon-Peppas L. Rhodamine-loaded poly(lactic-co-glycolic acid) nanoparticles for investigation of in vitro interactions with breast cancer cells. J Mater Sci Mater Med. 2009;20:387–95.

    Article  CAS  Google Scholar 

  22. Yang H, Li K, Liu YY, Liu ZH, Miyoshi H. Poly(d,l-lactide-co-glycolide) nanoparticles encapsulated fluorescent isothiocyanate and paclitaxol: preparation, release kinetics and anticancer effect. J Nanosci Nanotechnol. 2009;9:282–7.

    Article  CAS  Google Scholar 

  23. Costantino L, Gandolfi F, Bossy-Nobs L, Tosi G, Gurny R, Rivasi F, et al. Nanoparticulate drug carriers based on hybrid poly(d,l-lactide-co-glycolide)-dendron structures. Biomaterials. 2006;27:4635–45.

    Article  CAS  Google Scholar 

  24. Sunder A, Kramer M, Hanselmann R, Mulhaupt R, Frey H. Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols. Angew Chem Int Edit. 1999;38:3552–5.

    Article  CAS  Google Scholar 

  25. Kainthan RK, Brooks DE. Comparison of hyperbranched and linear polyglycidol unimolecular reverse micelles as nanoreactors and nanocapsules. Macromol Rapid Commun. 2005;26:155–9.

    Article  Google Scholar 

  26. Wilms D, Stiriba SE, Frey H. Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Accounts Chem Res. 2010;43:129–41.

    Article  CAS  Google Scholar 

  27. Olivier JC, Huertas R, Lee HJ, Calon F, Pardridge WM. Synthesis of pegylated immunonanoparticles. Pharm Res. 2002;19:1137–43.

    Article  CAS  Google Scholar 

  28. Tomboly C, Peter A, Toth G. In vitro quantitative study of the degradation of endomorphins. Peptides. 2002;23:1573–80.

    Article  CAS  Google Scholar 

  29. Sunder A, Hanselmann R, Frey H, Mulhaupt R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules. 1999;32:4240–6.

    Article  CAS  Google Scholar 

  30. Dehouck MP, Jolliet-Riant P, Bree F, Fruchart JC, Cecchelli R, Tillement JP. Drug transfer across the blood–brain barrier: correlation between in vitro and in vivo models. J Neurochem. 1992;58:1790–7.

    Article  CAS  Google Scholar 

  31. Meresse S, Dehouck MP, Delorme P, Bensaid M, Tauber JP, Delbart C, et al. Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J Neurochem. 1989;53:1363–71.

    Article  CAS  Google Scholar 

  32. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33:87–107.

    Article  CAS  Google Scholar 

  33. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Meth. 1994;53:55–63.

    Article  CAS  Google Scholar 

  34. Holter D, Burgath A, Frey H. Degree of branching in hyperbranched polymers. Acta Polym. 1997;48:30–5.

    Article  Google Scholar 

  35. Scholes PD, Coombes AGA, Illum L, Davis SS, Watts JF, Davies MC, et al. Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J Control Release. 1999;59:261–78.

    Article  CAS  Google Scholar 

  36. Quellec P, Gref R, Dellacherie E, Sommer F, Tran MD, Alonso MJ. Protein encapsulation within poly(ethylene glycol)-coated nanospheres. II. Controlled release properties. J Biomed Mater Res. 1999;47:388–95.

    Article  CAS  Google Scholar 

  37. Gan CW, Feng SS. Transferrin-conjugated nanoparticles of poly(lactide)-d-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood–brain barrier. Biomaterials. 2010;31:7748–57.

    Article  CAS  Google Scholar 

  38. Baratchi S, Kanwar RK, Ashok C, Hittu M, Parratt A, Sahoo SK, et al. Promises of nanotechnology for drug delivery to brain in neurodegenerative diseases. Curr Nanosci. 2009;5:15–25.

    Article  CAS  Google Scholar 

  39. Prabha S, Labhasetwar V. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharm Res. 2004;21:354–64.

    Article  CAS  Google Scholar 

  40. Discher BM, Won YY, Ege DS, Bates FS, Discher DE, Hammer DA, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284:1143–6.

    Article  CAS  Google Scholar 

  41. Thole M, Nobmann S, Huwyler J, Bartmann A, Fricker G. Uptake of cationized albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries. J Drug Target. 2002;10:337–44.

    Article  CAS  Google Scholar 

  42. Schroder U, Sabel BA. Nanoparticles, a drug carrier system to pass the blood–brain barrier, permit central analgesic effects of i.v. dalargin injections. Brain Res. 1996;710:121–4.

    Article  CAS  Google Scholar 

  43. Das D, Lin S. Double-coated poly(butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J Pharm Sci. 2005;94:1343–53.

    Article  CAS  Google Scholar 

  44. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 1995;674:171–4.

    Article  CAS  Google Scholar 

  45. Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today. 2008;13:1099–106.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by China National Natural Scientific Found (30700780), Beijing Natural Scientific Found (7102052) and Beijing Nova Program (2008A083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, H., Jin, X., Li, L. et al. OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability. J Mater Sci: Mater Med 23, 1891–1901 (2012). https://doi.org/10.1007/s10856-012-4658-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4658-7

Keywords

Navigation