Skip to main content

Advertisement

Log in

Surface modification of zirconium by anodisation as material for permanent implants: in vitro and in vivo study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The potential use of anodised zirconium as permanent implant has been investigated. Zirconium was anodised at constant potential between 3 and 30 V in H3PO4. Electrochemical assays were conducted in simulated body fluid solution (SBF) in order to evaluate the effect of the surface oxide on the corrosion resistance in vitro after 30 days of immersion. The rupture potential increases when increasing thickness of the anodic surface film. The increase in the barrier effect when increasing anodising potential is also verified by EIS. Anodisation in H3PO4 proved to increase the apatite formation capability of zirconium in a single step. In vivo bone formation was also analysed by implanting the modified materials in Wistar rats. Anodised Zr presents higher corrosion resistance in SBF in all the studied immersion times when compared with non anodised Zr. Additionally, in vivo experiments evidence bone generation and growth in contact with zirconium implants both in the as-received and anodised condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nag S, Banerjee R, Fraser HL. Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Mater Sci Eng C. 2005;25:357–62.

    Article  Google Scholar 

  2. Lopez MF, Gutierrez A, Jimenez JA. Surface characterization of new non-toxic titanium alloys for biomedical characterization. Surf Sci. 2001;482–485:300–5.

    Article  Google Scholar 

  3. Taddei EB, Henriques VAR, Silva CRM, Cairo CAA. Production of new titanium alloy for orthopedic implants. Mater Sci Eng C. 2004;24:683–7.

    Article  Google Scholar 

  4. Li SJ, Yang R, Niinomi M, Hao YL, Cui YY. Formation and growth of calcium phosphate on the surface of oxidized Ti–29Nb–13Ta–4.6Zr alloy. Biomaterials. 2004;25:2525–32.

    Article  CAS  Google Scholar 

  5. Li SJ, Yang R, Li S, Hao YL, Cui YY, Niinomi M, Guo ZX. Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications. Wear. 2004;257:869–76.

    Article  CAS  Google Scholar 

  6. Navarro M, Michiardi A, Castaño O, Planell JA. Biomaterials in orthopaedics—review. J R Soc Int. 2008;5:1137–58.

    Article  CAS  Google Scholar 

  7. Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26:11–21.

    Article  CAS  Google Scholar 

  8. Lopez MF, Gutierrez A, Jimenez JA. In vitro corrosion behavior of titanium alloys without vanadium. Electrochim Acta. 2002;47:1359–64.

    Article  CAS  Google Scholar 

  9. Saldaña L, Méndez-Vilas A, Jiang L, Multigner M, González-Carrasco JL, Pérez-Prado MT, González-Martín ML, Munuera L, Vilaboa N. In vitro biocompatibility of an ultrafined grained zirconium. Biomaterials. 2007;28:4343–54.

    Article  Google Scholar 

  10. Cabrini R, Guglielmotti MB, Almagro JC. Histomorphometry of initial bone healing around zirconium implants in rats. Implant Dent. 1993;2:264–7.

    Article  CAS  Google Scholar 

  11. Costa OR, Guglielmotti MB, Rimoli E, Cabrini RL. Use of zircalloy to induce bone regeneration. A 2-year follow-up study. Acta Odont Latinoam. 1994;8:17–26.

    CAS  Google Scholar 

  12. Guglielmotti MB, Guerrero C, Cabrini RL. Chronodynamic evaluation of the stages of osseointegration in zirconium laminar implants. Acta Odont Latinoam. 1997;10:11–23.

    CAS  Google Scholar 

  13. Hiromoto S, Hanawa T. Re-passivation current of amorphous Zr65Al7.5Ni10Cu17.5 alloy in a Hanks’ balanced solution. Electrochemica Acta. 2002;47:1343–9.

    Article  CAS  Google Scholar 

  14. Hanawa T. In vivo metallic biomaterials and surface modification. Mater Sci Eng A. 1999;267:260–6.

    Article  Google Scholar 

  15. Kohn DH. Metals in medical applications. Curr Opin Solid State Mater Sci. 1998;3:309–16.

    Article  CAS  Google Scholar 

  16. Patel AM, Spector M. Tribological evaluation of oxidized zirconium using an articular cartilage counterface: a novel material for potential use in hemiarthroplasty. Biomaterials. 1997;18:441–7.

    Article  CAS  Google Scholar 

  17. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial—review. Biomaterials. 1999;20:1–25.

    Article  CAS  Google Scholar 

  18. Carinci F, Pezzetti F, Volinia S, Francioso F, Arcelli D, Farina E, Piattelli A. Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials. 2004;25:215–28.

    Article  CAS  Google Scholar 

  19. Deville S, Chevalier J, Fantozzi G, Bartolomé JF, Requena J, Moya JS, Torrecillas R, Díaz LA. Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. J Eur Ceram Soc. 2003;23:2975–82.

    Article  CAS  Google Scholar 

  20. Chevalier J, Gremillard L. Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc. 2008;29:1245–55.

    Article  Google Scholar 

  21. Adolfsson E, Hermansson L. Zirconia fluorapatite materials produced by HIP. Biomaterials. 1999;20:1263–7.

    Article  CAS  Google Scholar 

  22. Mendonça G, Mendonça DBS, Aragão FJL, Cooper LF. Advancing dental implant surface technology—from micron to nanotopography. Biomaterials. 2008;29:3822–35.

    Article  Google Scholar 

  23. Davies JE. Bone bonding at natural and biomaterials surfaces. Biomaterials. 2007;28:5058–67.

    Article  CAS  Google Scholar 

  24. Oliveira AL, Mano JF, Reis RL. Nature-inspired calcium phosphate coatings: present status and novel advances in the science of mimicry. Curr Opin Solid State Mater Sci. 2003;7:309–18.

    Article  CAS  Google Scholar 

  25. Barrere F, Snel MME, van Blitterswijk CA, de Groot K, Layrolle P. Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials. 2004;25:2901–10.

    Article  CAS  Google Scholar 

  26. Gomez Sanchez A, Schreiner W, Duffó G, Ceré S. Surface characterization of anodized zirconium for biomedical applications. Appl Surf Sci. 2011;257:6397–405.

    Article  Google Scholar 

  27. Kokubo T, Ito S, Huang ZT, Hayashi T, Sakka S, Kitsugi T, Yamamuro T. Ca, P-rich layer formed on high-strength bioactive glass–ceramic A-W. J Biomed Mater Res. 1990;24:331–43.

    Article  CAS  Google Scholar 

  28. Kokubo T, Kushitani H, Sakka S. Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramic A-W3. J Biomed Mater Res. 1990;24:721–34.

    Article  CAS  Google Scholar 

  29. Zplot for Windows. Electrochemistry, impedance software operating manual, Part 1. Southern Pines, NC: Scribner Ass. Inc.;1998.

  30. International Standard ISO 23317:2007(E), Implants for surgery—in vitro evaluation for apatite-forming ability of implant materials, Switzerland; 2007.

  31. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  32. Ballarre J, Manjubala I, Schreiner WH, Orellano JC, Fratzl P, Ceré S. Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol–gel coatings of stainless steel implants. Acta Biomater. 2010;6:1601–9.

    Article  CAS  Google Scholar 

  33. Ballarre J, Seltzer R, Mendoza E, Orellano JC, Mai YW, García C, Ceré SM. Morphologic and nanomechanical characterization of bone tissue growth around bioactive sol–gel coatings containing wollastonite particles applied on stainless steel implants. Mater Sci Eng C. 2011;31:545–52.

    Article  CAS  Google Scholar 

  34. Bradbeer JN, Riminucci M, Bianco P. Giemsa as a fluorescent stain for mineralized bone. J Histochem Cytochem. 1994;42:677–80.

    Article  CAS  Google Scholar 

  35. Gomez Sanchez A. In vitro and in vivo evaluation of the feasibility of the use of zirconium as a permanent osseointegrable implant material. PhD thesis, Universidad Nacional de General San Martín, Argentina; 2011.

  36. Alves VA, Reis RQ, Santos ICB, Souza DG, Gonçalves TF, Pereira-da-Silva MS. In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25°C and 37°C. Corros Sci. 2009;51:2473–82.

    Article  CAS  Google Scholar 

  37. Karthega M, Raman V, Rajendran N. Influence of the potential on the electrochemical behavior of β titanium alloys in Hank’s solution. Acta Biomater. 2007;3:1019–23.

    Article  CAS  Google Scholar 

  38. Branzoi IV, Iordoc M, Codescu M. Electrochemical studies on the stability and corrosion resistance of new zirconium-based alloys for biomedical applications. Surf Interface Anal. 2008;40:167–73.

    Article  CAS  Google Scholar 

  39. Oliveira NTC, Biaggio SR, Rocha-Filho RC, Bocchi N. Electrochemical studies on zirconium and its alloys Ti–50Zr at.% and Zr–2.5Nb wt% in simulated physiological media. J Biomed Mater Res. 2005;74A:397–407.

    Article  CAS  Google Scholar 

  40. El-Mahdy GA, Mahmoud SS, EI-Dahan HA. Effect of halide ions on the formation and dissolution behaviour of zirconium oxide. Thin Solid Films. 1996;286:289–94.

    Article  CAS  Google Scholar 

  41. Hiromoto S, Tsai AP, Sumita M, Hanawa T. Effect of pH on the polarization behavior of Zr65Al7.5Ni10Cu17.5 amorphous alloy in a phosphate-buffered solution. Corros Sci. 2000;42:2193–200.

    Article  CAS  Google Scholar 

  42. Bardwell JA, McKubre MCH. AC impedance spectroscopy of the anodic film on zirconium in neutral solution. Electrochim Acta. 1991;36:647–53.

    Article  CAS  Google Scholar 

  43. Patrito EM, Macagno VA. Influence of the forming electrolyte on the electrical properties of anodic zirconium oxide films. Part II. AC impedance investigation. J Electroanal Chem. 1994;375:203–11.

    Article  CAS  Google Scholar 

  44. Pauporté T, Finne J. Impedance spectroscopy study of anodic growth of thick zirconium oxide films in H2SO4, Na2SO4 and NaOH solutions. J Appl Electrochem. 2006;36:33–41.

    Article  Google Scholar 

  45. Aziz-Kerrzo M, Conroy KG, Fenelon AM, Farell ST, Breslin CB. Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials. 2001;22:1531–9.

    Article  CAS  Google Scholar 

  46. Pan J, Thierry D, Leygraf C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta. 1996;41:1143–53.

    Article  CAS  Google Scholar 

  47. Ibris N, Mirza Rosca JC. EIS study of Ti and its alloys in biological media. J Electroanal Chem. 2002;526:53–62.

    Article  CAS  Google Scholar 

  48. de Assis SL, Wolynec S, Costa I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta. 2006;51:1815–9.

    Article  Google Scholar 

  49. Jorcin JB, Orazem ME, Pébère NP, Tribollet B. CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta. 2006;51:1473–9.

    Article  CAS  Google Scholar 

  50. Orazem M, Tribollet B. Electrochemical impedance spectroscopy, the electrochemical society. New York: Wiley; 2008.

    Book  Google Scholar 

  51. Brug GJ, Van Den Eeden ALG, Sluyters-Rehbach M, Sluyters JH. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem. 1984;176:275–95.

    Article  CAS  Google Scholar 

  52. Hsu CH, Mansfeld F. Concerning the conversion of the constant phase element parameter yo into a capacitance. Corrosion. 2001;57:747–8.

    Article  CAS  Google Scholar 

  53. Hirschorn B, Orazem M, Tribollet B, Vivier V, Frateur I, Musiani M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta. 2010;55:6218–27.

    Article  CAS  Google Scholar 

  54. Metikos-Hukovic M, Tkalcec E, Kwokal A, Piljac J. An in vitro study of Ti and Ti-alloys coated with sol–gel derived hydroxiapatite coatings. Surf Coat Technol. 2003;265:40–50.

    Article  Google Scholar 

  55. Antonakos A, Liarokapis E, Leventouri T. Micro-Raman and FTIR studies of syntetic and natural apatites. Biomaterials. 2007;28:3043–54.

    Article  CAS  Google Scholar 

  56. Silva CC, Rocha HHB, Freire FNA, Santos MRP, Saboia kDa, Goes JC, Sombra ASB. Hydroxyapatite screen-printed thick films: optical and electrical properties. Mater Chem Phys. 2005;92:260–8.

    Article  CAS  Google Scholar 

  57. Müller L, Müller FA. Preparation of SBF with different HCO3-content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2:181–9.

    Article  Google Scholar 

  58. Uchida M, Kim HM, Miyaji F, Kokubo T, Nakamura T. Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials. 2002;23:313–7.

    Article  CAS  Google Scholar 

  59. Müller FA, Bottino MC, Müller L, Henriques VAR, Lohbauer U, Bressiani AEA, Bressiani JC. In vitro apatite formation on chemically treated (P/M) Ti–13Nb–13Zr. Dent Mater. 2008;24:50–6.

    Article  Google Scholar 

  60. Tsutsumi Y, Nishimura D, Doi H, Nomura N, Hanawa T. Cathodic alkaline treatment of zirconium to give the ability to form calcium phosphate. Acta Biomater. 2010;6:4161–6.

    Article  CAS  Google Scholar 

  61. Tsutsumi Y, Nishimura D, Doi H, Nomura N, Hanawa T. Difference in surface reactions between titanium and zirconium in Hanks’ solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mater Sci Eng C. 2009;29:1702–8.

    Article  CAS  Google Scholar 

  62. Ha JY, Tsutsumi Y, Doi H, Nomura N, Kim KH, Hanawa T. Enhancement of calcium phosphate formation on zirconium by micro-arc oxidation and chemical treatments. Surf Coat Technol. 2011;205:4948–55.

    Article  CAS  Google Scholar 

  63. Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Bignozzi CA, Massari L, Brunelli G, Carinci F. Zirconium oxide coating improves implant osseointegration in vivo. Dent Mater. 2008;24:357–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support from Consejo Nacional de Investigaciones Científicas y Técnicas, Agencia Nacional de Promoción Científica y Tecnológica (PICT 0550/07) and Universidad Nacional de Mar del Plata (15G/270), Argentina, is gratefully acknowledged. The authors also acknowledge Drs. Valcarce and Valdes for the Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ceré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez Sanchez, A., Ballarre, J., Orellano, J.C. et al. Surface modification of zirconium by anodisation as material for permanent implants: in vitro and in vivo study. J Mater Sci: Mater Med 24, 161–169 (2013). https://doi.org/10.1007/s10856-012-4770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4770-8

Keywords

Navigation