Skip to main content

Advertisement

Log in

Formation of a nano-pattering NiTi surface with Ni-depleted superficial layer to promote corrosion resistance and endothelial cell-material interaction

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Zirconium ion implantation was performed on NiTi alloy to suppress Ni ion release as well as to improve corrosion resistance and cell-material interaction. A thicker Ni-depleted nano-scale composite layer formed after Zr implantation and the corrosion resistance was evidently increased in aspects of increased E br − E corr (difference between corrosion potential and breakdown potential) and decreased corrosion current density. 2.5/2 NiTi sample possessed the highest E br − E corr, more than 500 mV higher than that of untreated NiTi, suggesting a significant improvement on pitting corrosion resistance. Ni ion release rate of Zr–NiTi was decreased due to the depletion of Ni in the superficial surface layer and the diffusion resistance effect of the ZrO2/TiO2 nano-film. Increased surface wettability induced by increased surface roughness was obtained after Zr implantation. Zr–NiTi samples were found to be favorable to endothelial cells (ECs) proliferation, especially after 5 and 7 days culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. The atlas of heart disease and stroke. World Health Organization. http://www.who.int/cardiovascular_diseases/resources/atlas/en/. Accessed 16 Dec 2011.

  2. Dotter CT. Transluminally placed coilspring endarterial tube grafts: long-term patency in canine popliteal artery. Investig Radiol. 1969;4:329–32.

    Article  CAS  Google Scholar 

  3. Duerig T, Pelton A, Stöckel D. An overview of nitinol medical applications. Mater Sci Eng, A. 1999;273–275:149–60.

    Google Scholar 

  4. Stoeckel. nitinol medical devices and implants. Min Invas Ther & Allied Technol. 2000; 9: 81–8.

  5. Duerig TW, Pelton AR. An Overview of Superelastic Stent Design. Mater Sci Forum. 2002;394–395:1–8.

    Article  Google Scholar 

  6. Heintz C, et al. Corroded nitinol wires in explanted aortic endografts: an important mechanism of failure? J Endovasc Ther. 2001;8:248–53.

    Article  CAS  Google Scholar 

  7. Wataha JC, Lockwood PE, Marek M, Ghazi M. Ability of Ni containing biomedical alloys to activate monocytes and endothelial cells in vitro. J Biomed Mater Res. 1999;45:251–7.

    Article  CAS  Google Scholar 

  8. Kipshidze N, Dangas G, Tsapenko M. Role of the enothelium in modulaing neointimal formation. J Am Coll Cardiol. 2004;44:733–9.

    CAS  Google Scholar 

  9. Shen Y, et al. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: effects of surface micropatterning combined with plasma nanocoatings. Acta Biomater. 2009;5:3593–604.

    Article  CAS  Google Scholar 

  10. Plant SD, Grant DM, Leach L. Behaviour of human endothelial cells on surface modified NiTi alloy. Biomaterials. 2005;26:5359–67.

    Article  CAS  Google Scholar 

  11. Sargeant TD, Rao MS, Koh C-Y, Stupp SI. Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers. Biomaterials. 2008;29:1085–98.

    Article  CAS  Google Scholar 

  12. Yeung KWK, et al. Nitrogen plasma-implanted nickel titanium alloys for orthopedic use. Surf Coat Technol. 2007;201:5607–12.

    Article  CAS  Google Scholar 

  13. Zhao TT, Li Y, Xiang Y, Zhao XQ, Zhang T. Surface characteristics, nano-indentation and corrosion behavior of Nb implanted NiTi alloy. Surf Coat Technol. 2011;205:4404–10.

    Article  CAS  Google Scholar 

  14. Shevchenko N, Pham M-T, Maitz MF. Studies of surface modified NiTi alloy. Appl Surf Sci. 2004;235:126–31.

    Article  CAS  Google Scholar 

  15. de Camargo EN, et al. Determination of Ni release in NiTi SMA with surface modification by nitrogen plasma immersion ion implantation. J Mater Eng Perform. 2011;20:798–801.

    Article  CAS  Google Scholar 

  16. Zhao TT, Li Y, Zhao XQ, Chen H, Zhang T. Ni ion release, osteoblasts-materials interactions and hemocompatibility of hafnium implanted NiTi alloy. J Biomed Mater Res B. 2012;100(3):646–59.

    Google Scholar 

  17. Poon RWY, et al. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys. Biomaterials. 2005;26:2265–72.

    Article  CAS  Google Scholar 

  18. Zhao TT, Li Y, Gao YZ, Xiang Y, Chen H, Zhang T. Hemocompatibility investigation of the NiTi alloy implanted with tantalum. J Mater Sci Mater Med. 2011;22:2311–8.

    Article  CAS  Google Scholar 

  19. Zheng YF, Liu D, Liu XL, Li L. Enhanced corrosion resistance of Zr coating on biomedical TiNi alloy prepared by plasma immersion ion implantation and deposition. Appl Surf Sci. 2008;255:512–4.

    Article  CAS  Google Scholar 

  20. Saldaña Laura, et al. In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials. 2007;28:4343–54.

    Article  Google Scholar 

  21. Kulakov OB, Doktorov AA, D’iakova SV. Denisov-Nikol’skiĭ IuI, Grötz KA. Experimental study of osseointegration of zirconium and titanium dental implants. Morfologiia. 2005;127:52–5.

    CAS  Google Scholar 

  22. Goodman SB, Davidson JA, Fornasier VL, Mishra AK. Histological response to cylinders of a low modulus titanium alloy (Ti–13Nb–13Zr) and a wear resistant zirconium alloy (Zr–2.5Nb) implanted in the rabbit tibia. J Appl Biomater. 1993;4:331–9.

    Article  CAS  Google Scholar 

  23. Yu SY, Scully JR. Corrosion and passivity of Ti–13 %Nb–13 %Cr in comparison to other biomedical implant alloys. Corrosion J. 1997;53(12):965–76.

    Article  CAS  Google Scholar 

  24. Standard test method for conducting cyclic potentiodynamic polarization measurements to determine the corrosion susceptibility of small implant devices, ASTM-F 2129. 2008.

  25. Biological evaluation of medical devices-Part 12: sample preparation and reference materials. ISO 10993-12:2004.

  26. Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1741–7.

    Article  CAS  Google Scholar 

  27. Kubicek JD, Brelsford S, Ahluwalia P, Leduc PR. Integrated lithographic membranes and surface adhesion chemistry for three-dimensional cellular stimulation. Langmuir. 2004;20:11552–6.

    Article  CAS  Google Scholar 

  28. Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis AS. Use of nanotopography to study mechanotransduction in fibroblasts—methods and perspectives. Eur J Cell Biol. 2004;83:159–69.

    Article  Google Scholar 

  29. Zhu B, Zhang Q, Lu Q, Xu Y, Yin J, Hu J, Wang ZG. Nanotopographical guidance of C6 glioma cell alignment and oriented growth. Biomaterials. 2004;25:4215–23.

    Article  CAS  Google Scholar 

  30. Tan L, Crone WC. Effects of methane plasma ion implantation on microstructure and wear resistance of NiTi shape memory alloys. Thin Solid Films. 2005;472:282–90.

    Article  CAS  Google Scholar 

  31. Yamamura Y, Tawara H. Energy dependence of ion-induced sputtering from monatomic solids at normal incidence. At Data Nucl Data Tables. 1996;62:149–253.

    Article  CAS  Google Scholar 

  32. Levintant-Zayonts N, Kucharski S. Surface characterization and wear behavior of ion implanted NiTi shape memory alloy. Vacuum. 2009;83:S220–3.

    Article  CAS  Google Scholar 

  33. Chu CL, Guo C, Sheng XB, Dong YS, Lin PH, Yeung KWK, Chu PK. Microstructure, nickel suppression and mechanical characteristics of electropolished and photoelectrocatalytically oxidized biomedical nickel titanium shape memory alloy. Acta Biomater. 2009;5:2238–45.

    Article  CAS  Google Scholar 

  34. Shabalovskaya SA, Anderegg JW. Surface spectroscopic characterization of TiNi nearly equiatomic shape memory alloys for implants. J Vac Sci Technol A. 1995;13:2624–32.

    Article  CAS  Google Scholar 

  35. Frankel GS. Pitting corrosion, corrosion: fundamentals, testing, and protection, vol. 13A. ASM International: ASM Handbook; 2003. p. 236–41.

    Google Scholar 

  36. Yeung KWK, et al. In vitro and in vivo characterization of novel plasma treated nickel titanium shape memory alloy for orthopedic implantation. Surf Coat Technol. 2007;202:1247–51.

    Article  CAS  Google Scholar 

  37. Borgs C, De Coninck J, Kotecký R, Zinque M. Does the roughness of the substrate enhance wetting? Phys Rev Lett. 1995;74:2292–4.

    Article  CAS  Google Scholar 

  38. Cai KY, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloid Surface B. 2006;49:136–44.

    Article  CAS  Google Scholar 

  39. Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:3074–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC), No. 50971007 and 51171009. Yan Li acknowledges the Program for New Century Excellent Talents in University (NCET-09-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, T., Li, Y., Xia, Y. et al. Formation of a nano-pattering NiTi surface with Ni-depleted superficial layer to promote corrosion resistance and endothelial cell-material interaction. J Mater Sci: Mater Med 24, 105–114 (2013). https://doi.org/10.1007/s10856-012-4777-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4777-1

Keywords

Navigation