Skip to main content

Advertisement

Log in

Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biocompatible and biodegradable polyurethanes were prepared with fixed aliphatic diisocyanate level and varying ratios of isosorbide, and PCL diol via a simple one-shot polymerization without a catalyst. The successful synthesis of the polyurethanes was confirmed by gel permeation chromatography, 1H-nuclear magnetic resonance and Fourier transform-infrared spectroscopies and the thermal properties were determined by differential scanning calorimetry and showed glass transition temperatures of around 30–35 °C. The degradation tests were performed at 37 °C in phosphate buffer solution (approx. pH 7.3) and showed a mass loss of around 5 % after 12 weeks, except for the polymer with the highest isosorbide content which showed an initial rapid mass loss. The in vitro cytocompatibility test results following culture of osteoblasts on the polymer surface showed that relative cell number on all of the polyurethane films after 5 days of cultured on polymer films was lower compared to the proliferation rate on the optimized tissue culture plastic. These polymers offer significant promise due to the simplicity of the synthesis and the controlled degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hollinger JO, Battistone GC. Biodegradable bone repair materials: synthetic polymers and ceramics. Clin Orthop Relat Res. 1986;207:290–305.

    CAS  Google Scholar 

  2. Kohn J, Abramson S, Langer R. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JL, editors. Biomaterials sciences an introduction to materials in medicine [chapter 2]. London: Elsevier; 2006.

    Google Scholar 

  3. Yang S, Leong K, Du Z, Chua C. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7(6):679–89.

    Article  CAS  Google Scholar 

  4. Loh XJ, Tan YX, Li Z, Teo LS, Goh SH, Li J. Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)—thermodynamics of micellization and hydrolytic degradation. Biomaterials. 2008;29:2164–72.

    Article  CAS  Google Scholar 

  5. Rivera-Armenta JL, Heinze T, Mendoza-Martinez AM. New polyurethane foams modified with cellulose derivatives. Eur Polymer J. 2004;40:2803–12.

    Article  CAS  Google Scholar 

  6. Tanaka H, Adachi F, Kunimura M, Kurachi K. Poly(ester-urethane)s synthesized using polyoxalate diols. Polymer Eng Sci. 2005;45:163–73.

    Article  CAS  Google Scholar 

  7. Borkenhagen M, Stoll RC, Neuenschwander P, Suter UW, Aebischer P. In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel. Biomaterials. 1998;19:2155–65.

    Article  CAS  Google Scholar 

  8. Marcos-Fernandez A, Abraham GA, Valentin JL, San Roman J. Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly(epsilon-caprolactone) and amino acid derivatives. Polymer. 2006;47:785–98.

    Article  CAS  Google Scholar 

  9. Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G, Mantero S. Electrospun degradable polyester urethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials. 2005;26:4606–15.

    Article  CAS  Google Scholar 

  10. Stankus JJ, Guan JJ, Fujimoto K, Wagner WR. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials. 2006;27:735–44.

    Article  CAS  Google Scholar 

  11. Loh XJ, Tan KK, Li X, Li J. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials. 2006;27:1841–50.

    Article  CAS  Google Scholar 

  12. Lamba MK, Woodhouse KA, Cooper SL. Polyurethanes in biomedical applications. Washington, DC: CRC Press; 1998.

    Google Scholar 

  13. Gogolewski S. Biomedical polyurethanes. In: Arshady R, editor. Desk reference of functional polymers. Syntheses and application. Am Chem Soc: Washington, DC; 1996. p. 657–698.

  14. Sinclair TM, Kerrigan CL, Buntic R. Biodegradation of the polyurethane foam covering of breast implants. Plast Reconstr Surg. 1993;92:1003–13.

    Article  CAS  Google Scholar 

  15. Heijkants RGJC, van Calck RV, van Tienen TG, de Groot JH, Uma PB, Pennings AJ, Veth RPH, Schouten AJ. Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(-caprolactone) and 1,4-butanediisocyanate with uniform hard segment. Biomaterials. 2005;26:4219–28.

    Article  CAS  Google Scholar 

  16. Hassan MK, Mauritz KA, Storey RF, Wiggins JS. Biodegradable aliphatic thermoplastic polyurethane based on poly(ε-caprolactone) and l-lysinediisocyanate. J Polym Sci Polym Chem. 2006;44:2990–3000.

    Article  CAS  Google Scholar 

  17. Izhar U, Schwalb H, Borman JB, Hellener GR, Hotoveli-Salomon A, Marom G, Stern T, Cohn D. Novel synthetic selectively degradable vascular prostheses: a preliminary implantation study. J Surg Res. 2001;95:152–60.

    Article  CAS  Google Scholar 

  18. Gorna K, Gogolewski S. Biodegradable polyurethanes for implants. II. Invitro degradation and calcification of materials from poly(ε-caprolactone)–poly(ethyleneoxide) diols and various chain extenders. J Biomed Mater Res. 2002;60:592–606.

    Article  CAS  Google Scholar 

  19. Cohn D, Stern T, Gonzalez MF. EpsteinJ. biodegradable poly(ethyleneoxide)/poly(ε-caprolactone) multiblock copolymers. J Biomed Mater Res. 2002;59:273–81.

    Article  CAS  Google Scholar 

  20. Saad GR, Lee YJ, Seliger H. Synthesis and characterization of biodegradable poly(ester-urethanes) based on bacterial poly(R-3-hydroxybutyrate). J Appl Polym Sci. 2002;83:703–18.

    Article  CAS  Google Scholar 

  21. Gorna K, Gogolewski S. Novel biodegradable polyurethanes for medical applications. In: Agrawal CM, Parr JE, Lin ST, editors. Synthetic bioresorbable polymers for implants. ASTM STP 1396. West Conshohocken: American Society for Testing and Material and Materials; 2000. p. 39–57.

    Chapter  Google Scholar 

  22. Skarja GA, Woodhouse KA. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J Appl Polym Sci. 2000;75:1522–34.

    Article  CAS  Google Scholar 

  23. Fenouillot AF, Rousseau G, Colomines R, et al. Polymers from renewable 1, 4: 3, 6-dianhydrohexitols(isosorbide, isomannide and isoidide): a review. Prog Polym Sci. 2010;35:578–622.

    Article  CAS  Google Scholar 

  24. Kricheldorf HR. ‘‘Sugar diols’’ as building blocks of polycondensates. Polym Rev. 1997;37:599–631.

    Google Scholar 

  25. Noordover BAJ, Duchateau R, van Benthem RATM, et al. Enhancing the functionality of biobased polyestercoating resins through modification with citric acid. Biomacromolecules. 2007;8:3860–70.

    Article  CAS  Google Scholar 

  26. Noordover BAJ, van Staalduinen VG, Duchateau R, et al. Co- and terpolyesters based on isosorbide and succinic acid for coating applications: synthesis and characterization. Biomacromolecules. 2006;7:3406–16.

    Article  CAS  Google Scholar 

  27. Bourbonnais G. Les molecules de la vie: Les glucides. London: Chapman and Hill; 2003. p. 67–83.

    Google Scholar 

  28. Tamion R, Marsais F, Ribereau P. Quequiner. Asymmetric synthesis with new chiral auxiliaries derived from isosorbide. Tetrahedron: Asymmetry. 1993;4:2415–8.

    Article  CAS  Google Scholar 

  29. Kumar S, Ramachandran U. The synthesis and applications of asymmetric phase-transfer catalysts derived from isomannide and isosorbide. Tetrahedron. 2005;61:4141–8.

    Article  CAS  Google Scholar 

  30. Tamion R, Marsais F, Queguiner G. Base induced ring opening of a sugar derivative O-carbamate. Tetrahedron Lett. 1995;36:2761–4.

    Article  CAS  Google Scholar 

  31. Besset C, Binauld S, Ibert M, et al. Copper-catalyzed vs. thermal step growth polymerization of starch derived R-azide-x-alkyne dianhydrohexitol stereoisomers: to click or not to click? Macromolecules. 2010;43:17–9.

    Article  CAS  Google Scholar 

  32. Stoss P, Hemmer R. 1,4:3,6-Dianhydrohexitols. Adv Carbohydr Chem Biochem. 1991;49:93–173.

    Article  CAS  Google Scholar 

  33. Malhotra SV, Kumar V, East A, Jaffe M. Applications of corn-based chemistry. Bridge-Wash-Nat Acad Eng. 2007;37:17–24.

    Google Scholar 

  34. Langer R. Biomaterials: status, challenges, and perspectives. AIChE J. 2000;46:1286–9.

    Article  CAS  Google Scholar 

  35. Gorna K, Gogolewski S. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration J Biomed Mater Res A. doi:10.1002/jbm.a.

  36. Rivera-Armenta JL, Heinze TH, Mendoza-Martínez AM. New polyurethane foams modified with cellulose derivatives. Eur Polymer J. 2004;40:2803–12.

    Article  CAS  Google Scholar 

  37. Hummel DO, Ellinghorst G, Khatchatryan A, Stenzenberger HD. Segmented copolyethers with urethane and urea or semicarbazide links for blood circulation systems II. Die Angewandte Makromolekulare Chemie. 1979;82:129–48.

    Article  CAS  Google Scholar 

  38. Luo N, Wang DN, Ying SK. Hydrogen-bonding properties of segmented polyether poly(urethane urea) copolymer. Macromolecules. 1997;30:4405–9.

    Article  Google Scholar 

  39. Yang YS, Lee LJ, Lo SKT, Menardi PJ. Monitoring the cure of unsaturated polyester resins by pressure DSC and FTIR-PLC. J Appl Polym Sci. 1989;37:2313–30.

    Article  CAS  Google Scholar 

  40. Sarkar D, Yang JC, Gupta AS, Lopina ST. Synthesis and characterization of l-tyrosine based polyurethanes for biomaterial applications. J Biomed Mater Res. 2009;09:263–71.

    Article  Google Scholar 

  41. Geoghegan M, Krausch G. Wetting at polymer surfaces and interfaces. Prog Polym Sci. 2003;28:261–302.

    Article  CAS  Google Scholar 

  42. Lisa T, Tim GM, Raju A, Francois M, Ranjith J, Ian G, Pathiraja AG. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials. 2007;28:5407–17.

    Article  Google Scholar 

  43. Zhang C, Zhang N, Wen X. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels. J Biomed Mater Res. 2007;82A:637–50.

    Article  CAS  Google Scholar 

  44. Castner DG, Ratner BD. Biomedical surface science: foundations to frontiers. Surf Sci. 2002;500:28–60.

    Article  CAS  Google Scholar 

  45. Pai AS, Rubinstein I, Onyuksel H. PEGylated phospholipid nanomicelles interact with b-amyloid(1–42) and mitigate its b-sheet formation, aggregation and neurotoxicity in vitro. Peptides. 2006;27:2858–66.

    Article  CAS  Google Scholar 

  46. Gogolewski S, Pennings AJ, Lommen E, Wildevuur CHRH, Nieuwenhuis P. Growth of a neo-artery induced by a biodegradable polymeric vascular prosthesis. Makromol Chem, Rapid Commun. 1983;4:213–9.

    Article  CAS  Google Scholar 

  47. Gogolewski S, Galletti G. Degradable, microporous vascular prosthesis from segmented polyurethane. Colloid Polym Sci. 1986;264:854–8.

    Article  CAS  Google Scholar 

  48. Gogolewski S, Walpoth B, Rheiner P. Polyurethane microporous membranes as pericardial substitutes. Colloid Polym Sci. 1987;265:971–7.

    Article  CAS  Google Scholar 

  49. Gogolewski S, Pennings AJ. An artificial skin based on biodegradable mixtures of polylactides and polyurethanes for full-thickness skin wound covering. Makromol Chem Rapid Commun. 1983;4:675–80.

    Article  CAS  Google Scholar 

  50. Lelah MD, Cooper SL. Polyurethanes in medicine. Boca Raton: CRC; 1986.

    Google Scholar 

  51. Katarzyna G, Sylwester G. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(ε-caprolactone)–poly(ethylene oxide) diols and various chain extenders. J Biomed Mater Res. 2002;60:592–606.

    Article  Google Scholar 

  52. Aitken RR, Jeffs GMF. Thermoplastic polyurethane elastomers based on aliphatic diisocyanates: thermal transitions. Polymer. 1977;18:197–8.

    Article  CAS  Google Scholar 

  53. Takahara A, Coury AJ, Hergenrother RW, Cooper SL. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation. J Biomed Mater Res. 1991;25:341–56.

    Article  CAS  Google Scholar 

  54. Stokes K, Anderson JM, McVenes JM. Polyurethane elastomer biostability. J Biomater Appl. 1995;9:321–54.

    CAS  Google Scholar 

  55. Martins PALS, Filho ALS, Fonseca AMRM, Santos A, Santos L, Mascarenhas T, Jorge N, Ferreira AJM. Uniaxial mechanical behavior of the human female bladder. Int Urogynecol J. 2011;22:991–5.

    Article  Google Scholar 

  56. Sharma B, Ubaghs L, Keul H, Hocker H, Loontjens T, van Benthem R. Synthesis and characterization of alternating poly(amide urethane)s from epsilon-caprolactone, diamines and diphenyl carbonate. Polymer. 2005;46:1775–83.

    Article  CAS  Google Scholar 

  57. Martin DJ, Meijs GF, Renwick GM, McCarthy SJ, Gunatillake PA. The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. 1. Characterization of the series. J Appl Polym Sci. 1996;62:1377–86.

    Article  CAS  Google Scholar 

  58. Kim Y, Kim S. Effect of chemical structure on the biodegradation of polyurethanes under composting conditions. Polym Degrad Stab. 1998;62:343–52.

    Article  CAS  Google Scholar 

  59. Gupta D, Venugopal J, Prabhakaran MP, Dev VRG, Low S, Choon AT, Ramakrishna S. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomaterialia. 2009;5:2560–9.

    Article  CAS  Google Scholar 

  60. Malafaya PB, Reis RL. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater. 2009;5:644–60.

    Article  CAS  Google Scholar 

  61. Park HS, Seo JA, Lee HY, Kim HW, Wall IV, Gong MS, Knowles JC. Synthesis of elastic biodegradable polyesters of ethylene glycol and butylenes glycol from sebacic acid. Acta Biomater. 2012;8:2911–8.

    Article  CAS  Google Scholar 

  62. Park HS, Gong MS, Knowles JC. Synthesis and biocompatibility properties of polyester containing various diacid based on isosorbide. J Biomater Appl. 2012;27:99–109.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by WCU Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. R31-10069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myoung-Seon Gong or Jonathan C. Knowles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Hs., Gong, MS. & Knowles, J.C. Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility. J Mater Sci: Mater Med 24, 281–294 (2013). https://doi.org/10.1007/s10856-012-4814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4814-0

Keywords

Navigation