Skip to main content
Log in

Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Zn and Ca were selected as alloying elements to develop an Mg–Zn–Ca alloy system for biomedical application due to their good biocompatibility. The effects of Ca on the microstructure, mechanical and corrosion properties as well as the biocompatibility of the as-cast Mg–Zn–Ca alloys were studied. Results indicate that the microstructure of Mg–Zn–Ca alloys typically consists of primary α-Mg matrix and Ca2Mg6Zn3/Mg2Ca intermetallic phase mainly distributed along grain boundary. The yield strength of Mg–Zn–Ca alloy increased slightly with the increase of Ca content, whilst its tensile strength increased at first and then decreased. Corrosion tests in the simulated body fluid revealed that the addition of Ca is detrimental to corrosion resistance due to the micro-galvanic corrosion acceleration. In vitro hemolysis and cytotoxicity assessment disclose that Mg–5Zn–1.0Ca alloy has suitable biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Staiger MP, Pietaka AM, Huadmaia J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34.

    Article  CAS  Google Scholar 

  2. Song G, Atrens A. Understanding magnesium corrosion—a framework for improved alloy performance. Adv Eng Mater. 2003;5:837.

    Article  CAS  Google Scholar 

  3. El-Rahman SSA. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol Res. 2003;47(3):189–94.

    Article  CAS  Google Scholar 

  4. Ku CH, Pioletti DP, Browne M, Gregson PJ. Effect of different Ti–6Al–4V surface treatments on osteoblasts behaviour. Biomaterials. 2002;23(6):1447–54.

    Article  CAS  Google Scholar 

  5. Yumiko N, Yukari T, Yasuhide T, Tadashi S, Yoshio I. Differences in behaviour among the chlorides of seven rare earth elements administered intravenously to rats. Fundam Appl Toxicol. 1997;37:106–16.

    Article  Google Scholar 

  6. Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother. 2003;57(9):399–411.

    Article  CAS  Google Scholar 

  7. Ilich JZ, Kerstetter JE. Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr. 2000;19:715–37.

    CAS  Google Scholar 

  8. Serre CM, Papillard M, Chavassieux P, Voegel JC, Boivin G. Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. J Biomed Mater Res. 1998;42:626–33.

    Article  CAS  Google Scholar 

  9. Song G. Control of biodegradation of biocompatible magnesium alloys. Corros Sci. 2007;49(4):1696–701.

    Article  CAS  Google Scholar 

  10. Yang L, Zhang EL. Biocorrosion behaviour of magnesium alloy in different simulated fluids for biomedical application. Mater Sci Eng C. 2009;29:1691.

    Article  CAS  Google Scholar 

  11. Li GQ, Wu GH, Fan Y, Ding WJ. Effect of the main alloying elements on microstructure and corrosion resistance of magnesium alloys. Foundry Tech. 2006;27:81–2.

    CAS  Google Scholar 

  12. Wan Y, Xiong G, Luo H, He F, Huang Y, Zhou X. Preparation and characterization of a new biomedical magnesium–calcium alloy. Mater Des. 2008;29(10):2034–7.

    Article  CAS  Google Scholar 

  13. Zhang SX, Zhang XN, Zhao CL, Li JN, Song Y, Xie CY. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6:626–40.

    Article  CAS  Google Scholar 

  14. Zhang EL, Yin DS, Xu LP, Yang L, Yang K. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater Sci Eng C. 2009;29:987–93.

    Article  CAS  Google Scholar 

  15. Rosalbino F, Negri SD, Saccone A, Angelini E, Delfino S. Bio-corrosion characterization of Mg–Zn–X(X = Ca, Mn, Si) alloys for biomedical applications. J Mater Sci. 2010;21:1091–8.

    CAS  Google Scholar 

  16. Xu LP, Zhang EL, Yin DS, Yang K. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J Mater Sci. 2008;19:1017–25.

    Google Scholar 

  17. Bobby Kannan M, Singh Raman RK. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials. 2008;29(15):2306–14.

    Article  Google Scholar 

  18. Zhang SX, Li JN, Song Y, Zhao CL, Zhang XN, Xie CY. In vitro degradation, hemolysis and MC3T3–E1 cell adhesion of biodegradable Mg–Zn alloy. Mater Sci Eng C. 2009;29:1907–12.

    Article  CAS  Google Scholar 

  19. Li ZJ, Gu XN, Lou S, Zheng YF. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29:1329–44.

    Article  CAS  Google Scholar 

  20. Du H, Wei ZJ, Liu XW, Zhang EL. Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg–3Ca alloys for biomedical application. Mater Chem Phys. 2011;125:568–75.

    Article  CAS  Google Scholar 

  21. Xu ZG, Smith C, Chen S, Sankar J. Development and microstructural characterizations of Mg–Zn–Ca alloys for biomedical applications. Mater Sci Eng B. 2011;176:1660–5.

    Article  CAS  Google Scholar 

  22. Sun Y, Zhang BP, Wang Y, Geng L, Jiao XH. Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Mater Des. 2012;34:58–64.

    Article  Google Scholar 

  23. Zhang BP, Hou YL, Wang XD, Wang Y, Geng L. Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. Mater Sci Eng C. 2011;31:1667–73.

    Article  CAS  Google Scholar 

  24. Zhang EL, Yang L. Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Mater Sci Eng A. 2008;497:111–8.

    Article  Google Scholar 

  25. Zhang EL, Yang L, Xu JW, Chen HY. Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application. Acta Biomater. 2010;6:1756–62.

    Article  CAS  Google Scholar 

  26. ASTM-G31-72. Standard practice for laboratory immersion corrosion testing of metals. In: Annual book of ASTM standards[S]. Philadelphia: American Society for Testing and Materials; 2004.

  27. Zhao MC, Schmutz P, Brunner S, Liu M, Song GL, Atrens A. An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing. Corros Sci. 2009;51:1277–92.

    Article  CAS  Google Scholar 

  28. Shi Z, Atrens A. An innovative specimen configuration for the study of Mg corrosion. Corros Sci. 2011;53:226–46.

    Article  CAS  Google Scholar 

  29. ISO-10993-5. Biological evaluation of medical devices–part 5: tests for cytotoxicity: in vitro methods. Arlington: ANSI/AAMI; 1999. p. 10993–5.

    Google Scholar 

  30. Larionova TV, Park WW, You BS. A ternary phase observed in rapidly solidified Mg–Ca–Zn alloys. Scripta Mater. 2001;45(1):7–12.

    Article  CAS  Google Scholar 

  31. Brubaker CO, Liu ZK. A computational thermodynamic model of the Ca–Mg–Zn system. J. Alloys Compd. 2004;370:114–22.

    Article  CAS  Google Scholar 

  32. Massalski TB. Binary alloy phase diagrams. Ohio: American Society for Metals; 1986.

    Google Scholar 

  33. Rad HRB, Idris MH, Kadir MRA, Farahany S. Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys. Mater Des. 2012;33:88–97.

    Article  CAS  Google Scholar 

  34. Lee YC, Dahle AK, StJohn SH. The role of solute in grain refinement of magnesium. Metall Mater Trans A. 2000;31(11):2895–906.

    Article  Google Scholar 

  35. Li PJ, Tang B, Kandalova EG. Microstructure and properties of AZ91D alloy with Ca additions. Mater Lett. 2005;59:671–5.

    Article  CAS  Google Scholar 

  36. Petch NJ. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953;174:25–6.

    CAS  Google Scholar 

  37. Geng L, Zhang BP, Li AB, Dong CC. Microstructure and mechanical properties of Mg–4.0Zn–0.5Ca alloy. Mater Lett. 2009;63:557–9.

    Article  CAS  Google Scholar 

  38. Chino Y, Kobata M, Iwasaki H, Mabuchi M. Tensile properties from room temperature to 673 K of Mg-0.9wt% Ca alloy containing lamella Mg2Ca. Mater Trans. 2002;43:2643–6.

    Article  CAS  Google Scholar 

  39. Wang Y, Wei M, Gao JC, Hu JZ, Zhang Y. Corrosion process of pure magnesium in simulated body fluid. Mater Lett. 2008;62:2181–4.

    Article  Google Scholar 

  40. Song GL, Atrens A, Wu XL, Zhang B. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corros Sci. 1998;40:1769–91.

    Article  CAS  Google Scholar 

  41. Kim WC, Kim JG, Lee JY, Seok HK. Influence of Ca on the corrosion properties of magnesium for biomaterials. Mater Lett. 2008;62:4146–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 51021063), National Science Fund for Distinguished Young Scholars (Grant No. 50825102) and Open Project of State Key Laboratory for Powder Metallurgy of CSU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nian Feng Li or Ting Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, P., Li, N.F., Lei, T. et al. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys. J Mater Sci: Mater Med 24, 1365–1373 (2013). https://doi.org/10.1007/s10856-013-4856-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4856-y

Keywords

Navigation