Skip to main content
Log in

Mesoporous bioactive glass as a drug delivery system: fabrication, bactericidal properties and biocompatibility

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Implant-associated infection remains a difficult medical problem in orthopaedic surgery. Here, we report on the fabrication of gentamicin-loaded mesoporous bioactive glass (Gent-MBG) for use as a controlled antibiotic delivery system to achieve the sustained release of antibiotics in the local sites of bone defects. The high surface area and mesoporous structure of MBG enable higher drug loading efficiency (79–83 %) than non-mesoporous biological glass (NBG) (18–19 %). Gent-MBG exhibits sustained drug release for more than 6 days, and this controlled release of gentamicin significantly inhibits bacterial adhesion and prevents biofilm formation by S. aureus (ATCC25923) and S. epidermidis (ATCC35984). Biocompatibility tests with human bone marrow stromal cells (hBMSCs) indicate that MBG has better biocompatibility than NBG. Therefore, Gent-MBG can be used as a controlled drug delivery system to prevent and/or treat orthopedic peri-implant infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu H, Kawazoe N, Kitajima T, Myoken Y, Tomita M, Umezawa A, Chen G, Ito Y. Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity. Biomaterials. 2012;33:6140–6.

    Article  CAS  Google Scholar 

  2. Liu X, Rahaman MN, Fu Q. Bone regeneration in strong porous bioactive glass (13–93) scaffolds with an oriented microstructure implanted in rat calvarial defects. Acta Biomater. 2013;9:4889–98.

    Google Scholar 

  3. Nguyen TH, Lee BT. In vitro and in vivo studies of rhBMP2-coated PS/PCL fibrous scaffolds for bone regeneration. J Biomed Mater Res A. 2013;101:797–808.

    Google Scholar 

  4. Venkatesan J, Pallela R, Bhatnagar I, Kim SK. Chitosan-amylopectin/hydroxyapatite and chitosan-chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2012;51:1033–42.

    Google Scholar 

  5. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351:1645–54.

    Article  CAS  Google Scholar 

  6. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–9.

    Article  CAS  Google Scholar 

  7. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:167–93.

    Article  CAS  Google Scholar 

  8. Popat KC, Eltgroth M, Latempa TJ, Grimes CA, Desai TA. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007;28:4880–8.

    Article  CAS  Google Scholar 

  9. Vallet-Regi M, Ramila A, del Real RP, Perez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13:308–11.

    Article  CAS  Google Scholar 

  10. Hou ZY, Li CX, Ma PA, Cheng ZY, Li XJ, Zhang X, et al. Up-conversion luminescent and porous NaYF4:Yb3 + , Er3 + @SiO2 nanocomposite fibers for anti-cancer drug delivery and cell imaging. Adv Funct Mater. 2012;22:2713–22.

    Article  CAS  Google Scholar 

  11. Yang PP, Gai SL, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev. 2012;41:3679–98.

    Article  CAS  Google Scholar 

  12. Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012;41:2590–605.

    Article  CAS  Google Scholar 

  13. Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed Engl. 2007;46:7548–58.

    Article  CAS  Google Scholar 

  14. Carino IS, Pasqua L, Testa F, Aiello R, Puoci F, Iemma F, et al. Silica-based mesoporous materials as drug delivery system for methotrexate release. Drug Deliv. 2007;14:491–5.

    Article  CAS  Google Scholar 

  15. Wu C, Zhou Y, Lin C, Chang J, Xiao Y. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater. 2012;8:3805–15.

    Article  CAS  Google Scholar 

  16. Cicuendez M, Portoles MT, Izquierdo-Barba I, Vallet-Regi M. New nanocomposite system with nanocrystalline apatite embedded into mesoporous bioactive glass. Chem Mater. 2012;24:1100–6.

    Article  CAS  Google Scholar 

  17. Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release. 2006;110:522–30.

    Article  CAS  Google Scholar 

  18. Salonen J, Kaukonen AM, Hirvonen J, Lehto VP. Mesoporous silicon in drug delivery applications. J Pharm Sci. 2008;97:632–53.

    Article  CAS  Google Scholar 

  19. Khang D, Kim SY, Liu-Snyder P, Palmore GT, Durbin SM, Webster TJ. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials. 2007;28:4756–68.

    Article  CAS  Google Scholar 

  20. Wang CC, Hsu YC, Su FC, Lu SC, Lee TM. Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher. J Biomed Mater Res A. 2009;88:370–83.

    Google Scholar 

  21. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A. 2003;67:531–7.

    Article  Google Scholar 

  22. Kay S, Thapa A, Haberstroh KM, Webster TJ. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng. 2002;8:753–61.

    Article  CAS  Google Scholar 

  23. Alcaide M, Portoles P, Lopez-Noriega A, Arcos D, Vallet-Regi M, Portoles MT. Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. Acta Biomater. 2010;6:892–9.

    Article  CAS  Google Scholar 

  24. Chavez VL, Song L, Barua S, Li X, Wu Q, Zhao D, Rege K, Vogt BD. Impact of nanopore morphology on cell viability on mesoporous polymer and carbon surfaces. Acta Biomater. 2010;6:3035–43.

    Article  CAS  Google Scholar 

  25. Gentile F, La Rocca R, Marinaro G, Nicastri A, Toma A, Paonessa F, Cojoc G, Liberale C, Benfenati F, di Fabrizio E et al. Differential Cell Adhesion on Mesoporous Silicon Substrates. ACS Appl Mater Interfaces. 2012. doi:10.1021/am300519a.

  26. Zhang X, Wyss UP, Pichora D, Goosen MF. Biodegradable controlled antibiotic release devices for osteomyelitis: optimization of release properties. J Pharm Pharmacol. 1994;46:718–24.

    Article  CAS  Google Scholar 

  27. Arcos D, Ragel CV, Vallet-Regi M. Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials. 2001;22:701–8.

    Article  CAS  Google Scholar 

  28. Tan H, Peng Z, Li Q, Xu X, Guo S, Tang T. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus. Biomaterials. 2012;33:365–77.

    Article  CAS  Google Scholar 

  29. Wu T, Hua X, He Z, Wang X, Yu X, Ren W. The bactericidal and biocompatible characteristics of reinforced calcium phosphate cements. Biomed Mater. 2012;7:045003.

    Article  Google Scholar 

  30. Bjerkan G, Witso E, Bergh K. Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro. Acta Orthop. 2009;80:245–50.

    Article  Google Scholar 

  31. O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. Genetic approaches to study of biofilms. Methods Enzymol. 1999;310:91–109.

    Article  Google Scholar 

  32. Sun H, Wu C, Dai K, Chang J, Tang T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials. 2006;27:5651–7.

    Article  CAS  Google Scholar 

  33. Wei G, Yan X, Yi J, Zhao L, Zhou L, Wang Y, Chengzhong Yu. Synthesis and in vitro bioactivity of mesoporous bioactive glasses with tunable macropores. Microporous Mesoporous Mater. 2011;143:157–65.

    Article  CAS  Google Scholar 

  34. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with Special reference to the determination of surface area and porosity. Pure & Appl Chem. 1985;4:603–19.

    Article  Google Scholar 

  35. Ketonis C, Barr S, Adams CS, Hickok NJ, Parvizi J. Bacterial colonization of bone allografts: establishment and effects of antibiotics. Clin Orthop Relat Res. 2010;468:2113–21.

    Article  Google Scholar 

  36. Patel JD, Ebert M, Ward R, Anderson JM. S. epidermidis biofilm formation. effects of biomaterial surface chemistry and serum proteins. J Biomed Mater Res A. 2007;80:742–51.

    Google Scholar 

  37. Oliveira M, Bexiga R, Nunes SF, Carneiro C, Cavaco LM, Bernardo F, Vilela CL. Biofilm-forming ability profiling of Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet Microbiol. 2006;118:133–40.

    Article  CAS  Google Scholar 

  38. Borsari V, Fini M, Giavaresi G, Tschon M, Chiesa R, Chiusoli L, Salito A, Rimondini L, Giardino R. Comparative in vivo evaluation of porous and dense duplex titanium and hydroxyapatite coating with high roughnesses in different implantation environments. J Biomed Mater Res A. 2009;89:550–60.

    CAS  Google Scholar 

  39. Rao JY, Hurst RE, Bales WD, Jones PL, Bass RA, Archer LT, Bell PB, Hemstreet GP 3rd. Cellular F-actin levels as a marker for cellular transformation: relationship to cell division and differentiation. Cancer Res. 1990;50:2215–20.

    CAS  Google Scholar 

  40. Kamegawa T, Masuda Y, Suzuki N, Horiuchi Y, Yamashita H. Design of single-site Ti embedded highly hydrophilic silica thin films with macro-mesoporous structures. ACS Appl Mater Interfaces. 2011;3:4561–5.

    Article  CAS  Google Scholar 

  41. Bayram C, Demirbilek M, Caliskan N, Demirbilek ME, Denkbas EB. Osteoblast activity on anodized titania nanotubes: effect of simulated body fluid soaking time. J Biomed Nanotechnol. 2012;8:482–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Fund for Key Disciplines of Shanghai Municipal Education Commission (J50206), Natural Science Foundation of China (Nos. 30973038 and 51002095), Science and Technology Commission of Shanghai Municipality (No. 12JC1405600), the Innovation Foundation of Shanghai Education Committee (No. 11YZ86), and the Special Research Fund for Cultivating Outstanding Young Teachers in Shanghai Universities (No. ssd10008). The project was also funded by the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Dong Hua University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Ping Guo or Zhen-An Zhu.

Additional information

Yang Li and Yi-Zhuo Liu equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, YZ., Long, T. et al. Mesoporous bioactive glass as a drug delivery system: fabrication, bactericidal properties and biocompatibility. J Mater Sci: Mater Med 24, 1951–1961 (2013). https://doi.org/10.1007/s10856-013-4960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4960-z

Keywords

Navigation