Skip to main content
Log in

S-Nitrosothiol tethered polymer hexagons: synthesis, characterisation and antibacterial effect

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this work, we portray a new controlled nitric oxide (NO) delivery platform by grafting S-nitrosothiol derived from cysteine into the polymeric backbone of poly(vinyl methyl ether-co-maleic anhydride). Nitrosothiols (RSNO’s) are linked to the polymeric backbone through solvent displacement method. By adjusting solvent polarity, materials of different shapes and sizes varying between μm and nm are prepared. More often our method of preparation resulted in hexagonally shaped polymeric materials. The structure and RSNO conjugation analysis was investigated using scanning electron microscopy (SEM), FT-IR, UV–Vis spectroscopy and thermogravimetric analysis (TGA). Bactericidal efficacy of nitric oxide releasing polymer hexagons, a novel antibacterial agent is demonstrated against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Confocal microscopic studies revealed the enhanced bactericidal effect of polymer hexagons via membrane destruction. Results suggest that this biocompatible NO releasing RSNO conjugated polymer hexagons could be potentially useful for antimicrobial applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Ignarro LJ. Nitric oxide: biology and pathobiology. San Diego: Academic Press; 2000. p. 209–24.

    Google Scholar 

  2. Bredt DS. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res. 1999;31:577–97.

    Article  Google Scholar 

  3. Hill BG, Dranka BP, Bailey SM, Lancaster JR, Darley-Usmar VM. What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology. J Biol Chem. 2010;285:19699–704.

    Article  Google Scholar 

  4. Zhang J, Snyder SH. Nitric oxide in the nervous system. Annu Rev Pharmacol Toxicol. 1995;35:213–33.

    Article  Google Scholar 

  5. Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2004;2:820–32.

    Article  Google Scholar 

  6. DeGroote MA, Fang FC. Antimicrobial properties of nitric oxide. In: Fang FC, editor. Nitric oxide and infection. New York: Kluwer Academic/Plenum Publishers; 1999. p. 231–61.

    Google Scholar 

  7. Robson MC. Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am. 1997;77:637–50.

    Article  Google Scholar 

  8. Bad bugs, no drugs: as antibiotic discovery stagnates, a public health crisis brews. Arlington, VA: Infectious Diseases Society of America; 2004. p. 1–35.

  9. Barrett CT, Barrett JF. Antibacterials: Are the new entries enough to deal with the emerging resistance problems? Curr Opin Biotechnol. 2003;14:621–6.

    Article  Google Scholar 

  10. Wenzel RP, Bearman G, Edmond MB. Community-acquired methicillin-resistant Staphylococcus aureus (MRSA): new issues for infection control. Int J Antimicrob Agents. 2007;3:210–2.

    Article  Google Scholar 

  11. Bearman GML, Munro C, Sessler CN, Wenzel RP. Infection control and the prevention of nosocomial infections in the intensive care unit. Semin Respir Crit Care Med. 2006;27:310–24.

    Article  Google Scholar 

  12. Chastre J. Evolving problems with resistant pathogens. CMI. 2008;14(3):3–14.

    Google Scholar 

  13. Bodmann KF. Current guidelines for the treatment of severe pneumonia and sepsis. Chemotherapy. 2005;51:227–33.

    Article  Google Scholar 

  14. Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003;3:1261–3.

    Article  Google Scholar 

  15. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

    Article  Google Scholar 

  16. Sambhy V, MacBride MM, Peterson BR, Sen A. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc. 2006;128:9798–808.

    Article  Google Scholar 

  17. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110:16248–53.

    Article  Google Scholar 

  18. Trewyn BG, Whitman CM, Lin VSY. Mesoporous silica nanoparticles for intracellular delivery of membrane. Nano Lett. 2004;4:2139–43.

    Article  Google Scholar 

  19. Fang FC. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest. 1997;99:2818–25.

    Article  Google Scholar 

  20. Ghaffari A, Miller CC, McMullin B, Ghahary A. Potential application of gaseous nitric oxide as a topical antimicrobial agent. Nitric Oxide. 2006;14:21–9.

    Article  Google Scholar 

  21. Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 2002;102:1091–134.

    Article  Google Scholar 

  22. Napoli C, Ignarro LJ. Nitric oxide-releasing drugs. Annu Rev Pharmacol Toxicol. 2003;43:97–123.

    Article  Google Scholar 

  23. Miller MR, Megson IL. Recent developments in nitric oxide donor drugs. Br J Pharmacol. 2008;151:305–21.

    Article  Google Scholar 

  24. Kroncke KD, Suschek CV. Adulterated effects of nitric oxide-generating donors. J Invest Dermatol. 2008;128:258–60.

    Article  Google Scholar 

  25. Bauer JA, Rao W, Smith DJ. Evaluation of linear polyethyleneimine/nitric oxide adduct on wound repair: therapy versus toxicity. Wound Repair Regen. 1998;6:569–77.

    Article  Google Scholar 

  26. Richardson G, Benjamin N. Potential therapeutic uses for S-nitrosothiols. Clin Sci. 2002;102:99–105.

    Article  Google Scholar 

  27. Williams DLH. The mechanism of nitric oxide formation from S-nitrosothiols. Chem Commun. 1996;10:1085–91.

    Article  Google Scholar 

  28. Roy B, diHardemare AD, Fontecave M. New thionitrites: synthesis, stability, and nitric oxide generation. J Org Chem. 1994;59:7019–26.

    Article  Google Scholar 

  29. Lu D, Nadas J, Zhang G, Johnson W, Zweier JL, Cardounel AJ, Villamena FA, Wang PG. 4-Aryl-1,3,2-oxathiazolylium-5-olates as pH-controlled NO-donors: the next generation of S-nitrosothiols. J Am Chem Soc. 2007;129:5503–14.

    Article  Google Scholar 

  30. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35:780–9.

    Article  Google Scholar 

  31. Shin JH, Schoenfisch ME. Reducing implant-related infections: active release strategies. Analyst. 2006;131:609–15.

    Article  Google Scholar 

  32. Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. 2009;30:2782–9.

    Article  Google Scholar 

  33. Deupree SM, Schoenfisch MH. Morphological analysis of the antimicrobial action of nitric oxide on gram-negative pathogens using atomic force microscopy. Acta Biomater. 2009;5:1405–15.

    Article  Google Scholar 

  34. Carpenter AW, Slomberg DL, Rao KS, Schoenfisch MH. Influence of scaffold size on bactericidal activity of nitric oxide releasing silica nanoparticles. ACS Nano. 2011;3:426–32.

    Google Scholar 

  35. Skrzypchak AM, Lafayette NG, Bartlett RH, Zhou Z, Frost MC, Meyerhoff ME, Reynolds MM, Annich GM. Effect of varying nitric oxide release to prevent platelet consumption and preserve platelet function in an in vivo model of extracorporeal circulation. Perfusion. 2007;22:193–200.

    Article  Google Scholar 

  36. Jordan SW, Chaikof EL. Novel thromboresistant materials. J Vasc Surg. 2007;45:104A.

    Article  Google Scholar 

  37. Seabra AB, da Silva R, de Souza GFP, de Oliveira MG. Antithrombogenic polynitrosated polyester/poly(methyl methacrylate) blend for the coating of blood-contacting surfaces. ArtifiOrgans. 2008;32:262–70.

    Google Scholar 

  38. Coneski PN, Rao KS, Schoenfisch MH. Degradable nitric oxide-releasing biomaterials via post-polymerization functionalization of cross-linked polyesters. Biomacromolecule. 2010;11:3208–12.

    Article  Google Scholar 

  39. Lowenstein CJ, Dinerman JL, Snyder SH. Nitric oxide: a physiologic messenger. Ann Intern Med. 1994;120:227–32.

    Article  Google Scholar 

  40. Nablo BJ, Prichard HL, Butler RD, Klitzman B, Schoenfisch MH. Inhibition of implant-associated infections via nitric oxide release. Biomaterials. 2005;26:6984–90.

    Article  Google Scholar 

  41. Seabra AB, Pankotai E, Feher M, Somlai A, Kiss L, Biro L, Szabo C, Kollai M, De Oliveira MG, Lacza Z. S-nitrosoglutathione-containing hydrogel increases dermal blood flow in streptozotocin-induced diabetic rats. Br J Dermatol. 2007;156:814–8.

    Article  Google Scholar 

  42. Majo TC, Brant DO, Reynolds MM, Bartlett RH, Meyerhoff ME, Handa H, Annich GM. The attenuation of platelet and monocyte activation in a rabbit model of extracorporeal circulation by a nitric oxide releasing polymer. Biomaterials. 2010;31:2736–40.

    Article  Google Scholar 

  43. Hetrick EM, Shin JH, Stasko NA, Johnson B, Wespe AD, Holmuhamedov E, Schoenfisch MH. Bacterial efficacy of nitric oxide releasing silica nanoparticles. ACS Nano. 2008;2:235–42.

    Article  Google Scholar 

  44. Arbos P, Wirth M, Arangoa MA, Gabor F, Irache JM. Gatrez AN as a new polymer for the preparation of ligand-nanoparticle conjugates. J Control Release. 2002;83:321–30.

    Article  Google Scholar 

  45. Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery application. Chem Soc Rev. 2012;41:2545–61.

    Article  Google Scholar 

  46. Arbos P, Arangoa MA, Campanero MA, Irache JM. Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticles. Int J Pharm. 2002;242:129–36.

    Article  Google Scholar 

  47. Hobbie JE, Daley RJ, Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1997;33:1225–8.

    Google Scholar 

  48. Tas J, Westerneng G. Fundamental aspects of the interaction of propidium diiodide with nucleic acids studied in a model system of polyacrylamide films. J Histochem Cytochem. 1981;29:929–36.

    Article  Google Scholar 

  49. Hetrick EM, Schoenfisch MH. Analytical chemistry of nitric oxide. Annu Rev Anal Chem. 2009;2:409–33.

    Article  Google Scholar 

  50. Li Yan, Lee Ping I. Controlled nitric oxide delivery platform based on S-nitrosothiol conjugated interpolymer complexes for diabetic wound healing. Mol Pharm. 2009;7:254–66.

    Article  Google Scholar 

  51. Basu S, Hill JD, Shields H, Huang J, Bruce King S, Kim-Shapiro DB. Hemoglobin effects in Saville assay. Nitric Oxide. 2006;15:1–4.

    Article  Google Scholar 

  52. Priya S, Kaviyarasan T, Berchmans S. Naked eye detection of nitric oxide release from nitrosothiols aided by gold nanoparticles. Analyst. 2012;137:1541–3.

    Article  Google Scholar 

  53. Vandamme K, Melkebeek V, Cox E, Deforce D, Lenoir J, Adriaens E, Vervaet C, Remon JP. Influence of reaction medium during synthesis of Gantrez AN 119 nanoparticles for oral vaccination. Eur J Pharm Biopharm. 2010;74:202–8.

    Article  Google Scholar 

  54. Smith DJ, Chakravarthy D, Pulfer S, Simmons ML, Hrabie JA, Citro ML, Saavedra JE, Davies KM, Hutsell TC, Mooradian DL, Hanson SR, Keefer LK. Nitric oxide-releasing polymers containing the [N(O)NO]- group. J Med Chem. 1996;39:1148–56.

    Article  Google Scholar 

  55. Shishido SM, Seabra AB, Loh W, de Oliveira MG. Thermal and photochemical nitric oxide release from S-nitrosothiols incorporated in Pluronic F127 gel: potential uses for local and controlled nitric oxide release. Biomaterials. 2003;24:3543–53.

    Article  Google Scholar 

  56. Williams DLH. The chemistry of S-nitrosothiols. Acc Chem Res. 1999;32:869–76.

    Article  Google Scholar 

  57. Wink DA, Mitchel JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998;25:434–56.

    Article  Google Scholar 

  58. Hassett DJ, Schweizer HP, Ohman DE. Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. J Bacteriol. 1995;177:6330–7.

    Google Scholar 

  59. Polack B, Dacheux D, Delic-Attree I, Toussaint B, Vignais PM. Role of manganese superoxide dismutase in a mucoid isolate of Pseudomonas aeruginosa: adaptation to oxidative stress. Infect Immun. 1996;64:2216–19.

    Google Scholar 

  60. Nunoshiba T, deRojas-Walker T, Wishnok JS, Tannenbaum SR, Demple B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc Natl Acad Sci USA. 1993;90:9993–7.

    Article  Google Scholar 

  61. Fukuto JM, Cho JY, Switzer CH. The chemical properties of nitric oxide and related nitrogen oxides. In: Ignarro LJ, editor. Nitric oxide: biology and pathology. San Diego: Academic Press; 2000.

    Google Scholar 

  62. Fridovich I. The biology of oxygen radicals. Science. 1978;201:875–80.

    Article  Google Scholar 

  63. Simoes MMDSG, de Oliveira MG. Poly(vinyl alcohol) films for topical delivery of S-nitrosoglutathione: effect of freezing-thawing on the diffusion properties. J Biomed Mater Res Part B Appl Biomater. 2010;93B:416–24.

    Article  Google Scholar 

  64. Engelsman AF, Krom BP, Busscher HJ, Van Dam GM, Ploeg RJ, Van der Mei HC. Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomater. 2009;5:1905.

    Article  Google Scholar 

Download references

Acknowledgments

The author S. Priya acknowledges CSIR, New Delhi for granting the financial support for the above work in the form of junior research fellowship. The authors also acknowledge the funding received from CSIR network project (NWP0035 and M2D) for this work to be carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Berchmans.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1177 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priya, S., Nithya, R. & Berchmans, S. S-Nitrosothiol tethered polymer hexagons: synthesis, characterisation and antibacterial effect. J Mater Sci: Mater Med 25, 1–10 (2014). https://doi.org/10.1007/s10856-013-5032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5032-0

Keywords

Navigation