Skip to main content
Log in

Fabrication of electrospun zein nanofibers for the sustained delivery of siRNA

  • Delivery Systems
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, zein nanofibers based siRNA delivery system has been attempted for the first time. Here, the amphiphilic property of zein and the size advantage of nanofibers have been brought together in developing an ideal delivery system for siRNA. The morphological analysis of the GAPDH-siRNA loaded zein nanofibers revealed the proper encapsulation of the siRNA in the polymeric matrix. The loading efficiency of this delivery system was found to be 58.57 ± 2.4 % (w/w). The agarose gel analysis revealed that the zein nanofibers preserved the integrity of siRNA for a longer period even at the room temperature. The in vitro release studies not only depicted the sustaining potential of the zein nanofibers but also ensured the release of sufficient quantity of siRNA required to induce the gene silencing effect. The amphiphilic property of zein supported the cell attachment and thereby facilitated the transfection of siRNA into the cells. qRT-PCR analysis confirmed the potential of the developed system in inducing the desired gene silencing effect. Thus, electrospun zein nanofibers have been successfully employed for the delivery of siRNA which has a great therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–64.

    Article  Google Scholar 

  2. Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol. 2001;19:1029–34.

    Article  Google Scholar 

  3. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEGblock copolymers. J Control Release. 2003;89:341–53.

    Article  Google Scholar 

  4. Laabs TL, Wang H, Katagiri Y, McCann T, Fawcett JW, Geller HM. Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans. J Neurosci. 2007;27:14494–501.

    Article  Google Scholar 

  5. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, LeBot N, Moreno S, Sohrmann M, Welchman DP, Zipperien P, Ahringer J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003;421:231–7.

    Article  Google Scholar 

  6. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature. 2004;428:431–7.

    Article  Google Scholar 

  7. Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachy PA. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science. 2003;299:2039–45.

    Article  Google Scholar 

  8. Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F. siRNA targeting of the viral E6 oncogene efficiently kills human papilloma virus positive cancer cells. Oncogene. 2003;22:5938–45.

    Article  Google Scholar 

  9. Lieskovan SH, Heidel JD, Bartlett DW, Davis ME, Triche TJ. Sequence specificknockdown of EWS-FLI1 by targeted, non-viral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res. 2005;65:8984–92.

    Article  Google Scholar 

  10. Miller VM, Xia H, Marrs GL, Gouvion CM, Lee G, Davidson BL, Paulson HL. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci. 2003;100:7195–200.

    Article  Google Scholar 

  11. Singer O, Marr RA, Rockenstein E, Crews L, Coufal NG, Gage FH, Verma IM, Masliah E. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathologyin a transgenic model. Nat Neurosci. 2005;8:1343–9.

    Article  Google Scholar 

  12. Shi JJ, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. Differentially charged hollow core/shell lipid–polymer–lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem. 2011;123:7165–9.

    Article  Google Scholar 

  13. Chen JL, Wang H, Gao JQ, Chen HL, Liang WQ. Liposomes modified with polycation used for gene delivery: preparation, characterization and transfection in vitro. Int J Pharm. 2007;343:255–61.

    Article  Google Scholar 

  14. Colonna C, Conti B, Genta I, Alpar OH. Non-viral dried powders for respiratory gene delivery prepared by cationic and chitosan loaded liposomes. Int J Pharm. 2008;364:108–18.

    Article  Google Scholar 

  15. Sioud M, Sorensen DR. Cationic liposome-mediated delivery of siRNAs in adultMice. Biochem Biophys Res Commun. 2003;312:1220–5.

    Article  Google Scholar 

  16. Howard KA, Rahbek UL, Liu XD, Damgaard CK, Glud SZ, Andersen MO, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J. RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticles system. Mol Ther. 2006;14:476–84.

    Article  Google Scholar 

  17. Trabulo S, Resina S, Simoes S, Lebleu B, de Lima MCP. A non-covalent strategycombining cationic lipids and CPPs to enhance the delivery of splice correctingOligonucleotides. J Control Release. 2010;145:149–58.

    Article  Google Scholar 

  18. Zhang SB, Zhao B, Jiang HM, Wang B, Ma BC. Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release. 2007;123:1–10.

    Article  Google Scholar 

  19. Crombez L, Herrada GA, Konate K, Nguyen QN, McMaster GK, Brasseur R, Heitz F, Divita G. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther. 2009;17:95–103.

    Article  Google Scholar 

  20. Davidson TJ, Harel S, Arboleda VA, Prunell GF, Shelanski ML, Greene LA, Troy CM. Highly efficient small interfering RNA delivery to primary mammalian neurons induces microRNA-like effects before mRNA degradation. J Neurosci. 2004;24:10040–6.

    Article  Google Scholar 

  21. Lundberg P, El-Andaloussi S, Sutlu T, Johansson H, Langel U. Delivery of short interfering RNA using endosome lytic cell-penetrating peptides. Faseb J. 2007;21:2664–71.

    Article  Google Scholar 

  22. Veldhoen S, Laufer SD, Trampe A, Restle T. Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect. Nucl Acids Res. 2006;34:6561–73.

    Article  Google Scholar 

  23. Cao HQ, Jiang X, Chai C, Chew SY. RNA interference by nanofiber-based siRNA delivery system. J Control Release. 2010;144:203–12.

    Article  Google Scholar 

  24. Rujitanaroj P, Wang YC, Wang J, Chew SY. Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials. 2011;32:5915–23.

    Article  Google Scholar 

  25. Chew SY, Wen J, Yim EKF, Leong KW. Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules. 2005;6:2017–24.

    Article  Google Scholar 

  26. Gandhi M, Srikar R, Yarin AL, Megaridis CM, Gemeinhart RA. Mechanistic examination of protein release from polymer nanofibers. Mol Pharm. 2009;6:641–7.

    Article  Google Scholar 

  27. Srikar R, Yarin AL, Megaridis CM, Bazilevsky AV, Kelley E. Desorption-limited mechanism of release from polymer nanofibers. Langmuir. 2008;24:965–74.

    Article  Google Scholar 

  28. Kim HS, Yoo HS. Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Ther. 2013;20:378–85.

    Article  Google Scholar 

  29. Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14:1629–54.

    Article  Google Scholar 

  30. Elzoghby AO, Wael MS, Nazik AE. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release. 2012;161:38–49.

    Article  Google Scholar 

  31. Regier MC, Taylor JD, Borcyk T, Yang Y, Pannier AK. Fabrication and characterization of DNA-loaded zein nanospheres. J Nanobiotechnol. 2012;10:1–13.

    Article  Google Scholar 

  32. Karthikeyan K, Guhathakarta S, Rajaram R, Korrapati PS. Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int J Pharm. 2012;438:117–22.

    Article  Google Scholar 

  33. Normand J, Karasek MA. c. In Vitro Cell Dev Biol Anim. 1995;31:447–55.

    Article  Google Scholar 

  34. Mosmann T. Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  Google Scholar 

  35. Zeng J, Xu X, Chen X, Liang Q, Bian X, yang L, Jing X. Biodegradable electrospun fibers for drug delivery. J Control Release. 2003;92:227–31.

    Article  Google Scholar 

  36. Jiang Q, Reddy N, Yang Y. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomater. 2010;6:4042–51.

    Article  Google Scholar 

  37. Dhandayuthapani B, Poulose AC, Nagaoka Y, Hasumura T, Yoshida Y, Maekawa T, Kumar DS. Biomimetic smart nanocomposite: in vitro biological evaluation of zein electrospun fluorescent nanofiber encapsulated CdS quantum dots. Biofabrication. 2012;4:025008.

    Article  Google Scholar 

  38. Forbes K, Desforges M, Garside R, Aplin JD, Westwood M. Methods for siRNA-mediated reduction of mRNA and protein expression in human placental explants, isolated primary cells and cell lines. Placenta. 2009;30:124–9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors K. Karthikeyan and Venkat Raghavan Krishnaswamy are extremely grateful to the Council of Scientific and Industrial Research, New Delhi, for the award of senior research fellowship. We are grateful to Dr. A. B. Mandal, Director, CSIR-Central Leather Research Institute for providing the encouragement and facilities to carry out this work. This work was supported by Council of Scientific and Industrial Research (CSIR), New Delhi under the Project “Advance Drug Delivery (ADD—CSC 0302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purna Sai Korrapati.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10856_2015_5439_MOESM1_ESM.tif

Fig. S1. Phase contrast microscopic images depicting the attachment and spreading of cells on zein nanofibers at lower (a) and higher magnification (b). (TIFF 363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, K., Krishnaswamy, V.R., Lakra, R. et al. Fabrication of electrospun zein nanofibers for the sustained delivery of siRNA. J Mater Sci: Mater Med 26, 101 (2015). https://doi.org/10.1007/s10856-015-5439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5439-x

Keywords

Navigation