Skip to main content
Log in

Phytosynthesis of gold nanoparticles using Mappia foetida leaves extract and their conjugation with folic acid for delivery of doxorubicin to cancer cells

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Mappia foetida leaves extract is used as bioreductant for the synthesis of gold nanoparticles and their application in the efficient delivery of doxorubicin to human cancer cells is reported here. The formation of gold nanoparticles is evident from their characteristic optical absorption at ~560 nm. X-ray diffraction pattern of gold nanoparticles confirmed their fcc structure. Fourier transform infrared spectroscopy shows the bioactive molecules from plant extract capped on the surface of gold nanoparticles and conjugation of doxorubicin along with activated folic acid as navigational molecules for targeted drug delivery. Such a conjugation of gold nanoparticles is characterized by their weight loss, ~35–40 %, due to thermal degradation of plant biomass and conjugated drug along with receptor, as observed in thermogravimetric analysis. The spherical shaped gold nanoparticles (Φ 10–20 nm) are observed by field emission scanning electron microscopy and transmission electron microscopy images and the expected elemental composition by energy dispersive X-ray spectroscopy. Gold nanoparticles conjugated with activated folic acid and doxorubicin complex is found to be toxic for human cancer cells viz., MDA-MB-231, HeLa, SiHa and Hep-G2. Furthermore, the amount of drug released was maximum at pH 5.3 (an ambient condition for intravenous cancer drugs) followed by pH 7.2 and pH 6.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Irvani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–50.

    Article  Google Scholar 

  2. Shabnum N, Saradhi PP. Photosynthetic electron transport system promotes synthesis of Au-nanoparticles. PLoS One. 2013;8(8):e7123.

    Google Scholar 

  3. Yamal G, Sarrmila P, Rao KS, Saradhi PP. Yeast Extract Mannitol medium and its constituents promote synthesis of Au nanoparticles. Process Biochem. 2013;48:532–8.

    Article  Google Scholar 

  4. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41:2740–79.

    Article  Google Scholar 

  5. Kim C, Agasti SS, Zhu Z, Isaacs L, Rotello VM. Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat Chem. 2010;2(11):962–6.

    Article  Google Scholar 

  6. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev. 2008;37:1896–906.

    Article  Google Scholar 

  7. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem. 2010;49(19):3280–94.

    Article  Google Scholar 

  8. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res. 2008;41(12):1721–30.

    Article  Google Scholar 

  9. Lee H, Lee K, Kim IK, Park TG. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials. 2008;29(35):4709–18.

    Article  Google Scholar 

  10. Fadeel B, Bennett AE. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev. 2010;62(3):362–74.

    Article  Google Scholar 

  11. Sezgin E, Karatas OF, Cam D. Interaction of gold nanoparticles with living cells. Sigma. 2008;26:227–46.

    Google Scholar 

  12. Daniel MC, Astrue D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.

    Article  Google Scholar 

  13. Masala O, Seshadri R. Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res. 2004;34:41–81.

    Article  Google Scholar 

  14. Sau TK, Rogach AL. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater. 2010;22(16):1781–804.

    Article  Google Scholar 

  15. Zhang X, Yan S, Tyagi RD, Surmapalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere. 2011;82(4):489–94.

    Article  Google Scholar 

  16. Das RK, Brar SK. Plant mediated green synthesis: modified approaches. Nanoscale. 2013;5(21):10155–62.

    Article  Google Scholar 

  17. Bhat R, Sharanabasava VG, Deshpande R, Shetti U, Sanjeev G, Venkataraman A. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J Photochem Photobiol B. 2013;125:63–9.

    Article  Google Scholar 

  18. Jiang X, Sun D, Zhang G, He N, Liu H, Huang J, Wubah TO, Li Q. Investigation of active biomolecules involved in the nucleation and growth of gold nanoparticles by Artocarpus heterophyllus Lam leaf extract. J Nanopart Res. 2013;15:1741–51.

    Article  Google Scholar 

  19. Pandey S, Oza G, Mewada A, Shah R, Thakur M, Sharon M. Folic acid mediated synaphic delivery of doxorubicin using biogenic gold nanoparticles anchored to biological linkers. J Mater Chem B. 2013;1:1361–70.

    Article  Google Scholar 

  20. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–51.

    Article  Google Scholar 

  21. Heegaard PM, Boas U, Otzen DE. Dendrimer effects on peptide and protein fibrillation. Macromol Biosci. 2007;7:1047–59.

    Article  Google Scholar 

  22. Kamen BA, Capdevila A. Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci. 1986;83:5983–7.

    Article  Google Scholar 

  23. Pan J, Feng SS. Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Biomaterials. 2008;29:2663–72.

    Article  Google Scholar 

  24. Wang S, Lee RJ, Mathias CJ, Green MA, Low PS. Synthesis, purification, and tumor cell uptake of 67 Ga-deferoxamine-folate, a potential radiopharmaceutical for tumor imaging. Bioconjugate Chem. 1996;7(1):56–62.

    Article  Google Scholar 

  25. Steinberg G, Borch RF. Synthesis and evaluation of pteroic acid-conjugated nitroheterocyclic phosphoramidates as folate receptor-targeted alkylating agents. J Med Chem. 2001;44(1):69–73.

    Article  Google Scholar 

  26. Rui Y, Wang S, Low PS, Thompson DH. Diplasmenylcholinefolate liposomes: an efficient vehicle for intracellular drug delivery. J Am Chem Soc. 1998;120:11213–8.

    Article  Google Scholar 

  27. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT. Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol. 1996;14:1574–8.

    Article  Google Scholar 

  28. Sharma S, Kumar A, Namdeo AG. Pharmacognostical and phytochemical analysis of nothapodytes nimmoniana stem. Int J Pharm Pharm Sci. 2012;4:455–9.

    Google Scholar 

  29. Lorence A, Craig LN. Camptothecin, over four decades of surprising findings. Phytochemistry. 2004;65:2731–841.

    Article  Google Scholar 

  30. Prasenjit M, Mahua S, Parames CS. Aqueous extract of Terminalia arjuna prevents carbon tetrachloride induced hepatic and renal disorders. BMC Complement Altern Med. 2006;6:33–42.

    Article  Google Scholar 

  31. Mulvaney P. Surface plasmon spectroscopy of nanosized metal nanoparticles. Langmuir. 1996;12:788–800.

    Article  Google Scholar 

  32. Yallappa S, Manjanna J, Dhananjaya BL. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A. 2015;137:236–43.

    Article  Google Scholar 

  33. Dauthal P, Mukhopadyay M. Pruns domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind Eng Chem Res. 2012;51:13014–20.

    Article  Google Scholar 

  34. Yallappa S, Manjanna J, Sindhe MA, Satyanarayan ND, Pramod SN, Nagaraja K. Microwave assisted rapid synthesis and biological evaluation of stable copper nanoparticles using T. arjuna bark extract. Spectrochim Acta A. 2013;110:108–15.

    Article  Google Scholar 

  35. Long NN, Vu LV, Kiem CD, Doanh SC, Nguyer CT, Hang PT, Thien ND, Quynh LM. Synthesis and optical properties of colloidal gold nanoparticles. J Phys Conf Ser. 2007;187:012026.

    Article  Google Scholar 

  36. Alexander CM, Hamner KL, Maye MM, Dabrowiak JC. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjugate Chem. 2014;25:1261–71.

    Article  Google Scholar 

  37. Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev. 2001;50:107–42.

    Article  Google Scholar 

  38. Ankamwar B, Damle C, Ahmad A, Sastry M. Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol. 2005;5:1665–71.

    Article  Google Scholar 

  39. Kholoud MM, El-Noura A, Eftaihab A, Al-Warthanb A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arabian J Chem. 2010;3:135–40.

    Article  Google Scholar 

  40. Shankar SS, Ahamad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822–6.

    Article  Google Scholar 

  41. Kevin B. Shape of matters for nanoparticle technology. Cambridge: MIT Review; 2008.

    Google Scholar 

  42. Mewada A, Pandey S, Oza G, Shah R, Thakur M, Gupta A, Sharon M. A novel report on assessing pH dependent role of nitrate reductase on green biofabrication of gold nanoplates and nanocubes. J Bionanosci. 2013;7:174–80.

    Article  Google Scholar 

  43. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1:325–7.

    Article  Google Scholar 

  44. Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK. Cell selective response to gold nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3:111–9.

    Article  Google Scholar 

  45. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941–9.

    Article  Google Scholar 

  46. Raghunandan D, Ravishankar B, Sharanabasava G, Mahesh DR, Harsoor V, Yatagatti MS, Bhagawanraju M, Venkataraman A. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol. 2011;2:57–65.

    Article  Google Scholar 

  47. Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 2004;15:897–900.

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. S.P. Hegde of Green Gold Global Research Institute, Kumta, Karnataka (India) for experimental facility during this study. Mr. S. Yallappa gratefully acknowledges the financial support from Kuvempu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Manjanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yallappa, S., Manjanna, J., Dhananjaya, B.L. et al. Phytosynthesis of gold nanoparticles using Mappia foetida leaves extract and their conjugation with folic acid for delivery of doxorubicin to cancer cells. J Mater Sci: Mater Med 26, 235 (2015). https://doi.org/10.1007/s10856-015-5567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5567-3

Keywords

Navigation