Skip to main content
Log in

Electrospun poly(l-lactide)/zein nanofiber mats loaded with Rana chensinensis skin peptides for wound dressing

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Electrospun nanofiber mats can display impressive performance as an ideal wound dressing. In this study, poly(l-lactide)(PLLA)/zein nanofiber mats loaded with Rana chensinensis skin peptides (RCSPs) were successfully produced by two different electrospinning techniques, blend and coaxial, with the goal of developing a wound dressing material. The nanofiber mats were investigated by environmental scanning electron microscope (ESEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), water contact angle, mechanical tests and cell viability. The resulting nanofiber mats exhibited smooth surfaces, tiny diameters and different cross-sectional shapes from pure PLLA and zein nanofibers. The FTIR result showed that PLLA, zein and RCSPs were well dispersed, without chemical interactions. Compared with coaxial nanofiber mats, blending zein-RCSPs with PLLA enhanced hydrophilicity but decreased mechanical properties. Adding RCSPs into the electrospun nanofibers significantly improved the mechanical properties of the mats. Cell viability studies with human foreskin fibroblasts demonstrated that cell growth on PLLA/zein-RCSPs nanofiber mats was significantly higher than that on PLLA/zein nanofiber mats. The results indicate that nanofiber mats containing RCSPs are potential candidates for wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sabitha M, Sheeja R. Preparation and characterization of ampicillin-incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polym Eng Sci. 2014;55(3):541–8.

    Article  Google Scholar 

  2. Afeesh RU, Gopalsamy G, Yesupatham S, Lee YS, Cheol SK. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohyd Polym. 2014;102(15):884–92.

    Google Scholar 

  3. Jeong L, Kim MH, Jung JY, Min BM, Park WH. Effect of silk fibroin nanofibers containing silver sulfadiazine on wound dressing. Int J Nanomed. 2014;9(1):5277–87.

    Google Scholar 

  4. Morgado PI, Aguiar-Ricardo A, Correia IJ. Asymmetric membranes as ideal wound dressings: an overview on production methods, structure, properties and performance relationship. J Membrane Sci. 2015;490(15):139–51.

    Article  Google Scholar 

  5. Salehi SH, As’adi K, Mousavi SJ, Shoar S. Evaluation of amiotic membrane effectiveness in skin graft donor site dressing in burn patients. Indian J Surg. 2015;77(2):427–31.

    Article  Google Scholar 

  6. Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release. 2014;189:108–22.

    Article  Google Scholar 

  7. Croisier F, Atanasova G, Poumay Y, Jerome C. Polysaccharide-Coated PCL nanofibers for wound dressing applications. Adv Healthc Mater. 2014;3(12):2032–9.

    Article  Google Scholar 

  8. Munj HR, Nelson MT, Karandikar PS, Lannutti JJ, Tomasko DL. Biocompatible electrospun polymer blends for biomedical applications. J Biomed Mater Res B. 2014;102(7):1517–27.

    Article  Google Scholar 

  9. Wu Q, Wu DP, Guan YF. Fast equilibrium micro-extraction from biological fluids with biocompatible core-sheath electrospun nanofibers. Anal Chem. 2013;85(12):5924–32.

    Article  Google Scholar 

  10. Wiesner J, Vilcinskas A. Antimicrobial peptides the ancient arm of the human immune system. Virulence. 2010;1(5):440–64.

    Article  Google Scholar 

  11. Zhao J, Sun Y, Li Z, Su Q. Molecular cloning of novel antimicrobial peptide genes from the skin of the Chinese brown frog Rana chensinensis. Zool Sci. 2011;28(2):112–7.

    Article  Google Scholar 

  12. Jin LL, Song SS, Li Q, Chen YH, Wang QY, Hou ST. Identification and characterization of a novel antimicrobial polypeptide from the skin secretion of a Chinese frog (Rana chensinensis). Int J Antimicrob Ag. 2009;33(6):538–42.

    Article  Google Scholar 

  13. Wang C, Li HB, Li S, Tian LL, Shang DJ. Antitumor effects and cell selectivity of temporin-1CEa, an antimicrobial peptide from the skin secretions of the Chinese brown frog (Rana chensinesis). Biochimie. 2012;94(2):434–41.

    Article  Google Scholar 

  14. Qian ZJ, Jung WK, Kim SK. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin Rana catesbeiana Shaw. Bioresource Technol. 2008;99(6):1690–8.

    Article  Google Scholar 

  15. Huang XE, Wang L, Ji ZQ, Liu MY, Qian T, Li L. Safety of lienal polypeptide injection combined with chemotherapy in treating patients with advanced cancer. Asian Pac J Cancer Prev. 2015;16(17):7837–41.

    Article  Google Scholar 

  16. Zhang X, Li SM, Deng C, Zhang X, Lu C, Cheng YY, Hao LL, Lu K. Effects of rana polypeptides on the proliferation and apoptpsis of haCaT cells. Chin J Vet Sci. 2014;34(6):946–51.

    Google Scholar 

  17. Jiang QR, Reddy N, Yang YQ. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomater. 2010;6(10):4042–51.

    Article  Google Scholar 

  18. Dashdorj U, Reyes MK, Unnithan AR, Tiwari AP, Tumurbaatar B, Park CH, Kim CS. Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications. Int J Biol Macromol. 2015;80(1):1–7.

    Article  Google Scholar 

  19. Cui J, Qiu LY, Qiu YY, Wang QQ, Wei QF. Co-electrospun nanofibers of PVA-SbQ and Zein for wound healing. J Appl Polym Sci. 2015;132(39):42565.

    Article  Google Scholar 

  20. Wang YX, Chen LY. Fabrication and characterization of novel assembled prolamin protein nanofabrics with improved stability, mechanical property and release profiles. J Mater Chem. 2012;22(40):21592–601.

    Article  Google Scholar 

  21. Liao GY, Jiang SB, Xu XJ, Ke YL. Electrospun aligned PLLA/PCL/HA composite fibrous membranes and their in vitro degradation behaviors. Mater Lett. 2012;82(1):159–62.

    Article  Google Scholar 

  22. Roberta D, Paola B, Martina R, Florian D, Valérie S, Katya B, Giovanna I, Francesca G, Michele M, Ignazio C, Monica D. Self-assembling peptide-enriched electrospun polycaprolactone scaffolds promote the h-osteoblast adhesion and modulate differentiation-associated gene expression. Bone. 2012;51(5):851–9.

    Article  Google Scholar 

  23. Li M, Mondrinos MJ, Chen X, Lelkes PI. Electrospun blends of natural and synthetic polymers as scaffolds for tissue engineering. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference 2006 Jan 17 (pp. 5858-5861). IEEE.

  24. Yao C, Li XS, Song TY. Preparation and characterization of zein and Zein/Poly-L-lactide nanofiber yarns. J Appl Polym Sci. 2009;114(4):2079–86.

    Article  Google Scholar 

  25. Nam JY, Ray SS, Okamoto M. Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules. 2003;36(19):7126–31.

    Article  Google Scholar 

  26. Yogeshwar CV, Gnanamani A, Giridev VR, Madhusoothanan M, Sekaran G. Electrospinning of type I collagen and PCL nanofibers using acetic acid. J Appl Polym Sci. 2012;125(4):2997–3004.

    Google Scholar 

  27. Cai ZJ, Xu Y, Yang HZ, Jia JR, Liu YP. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility. Mat Sci Eng C-Mater. 2016;58(1):757–67.

    Google Scholar 

  28. Fortunati E, Aluigi A, Armentano I, Morena F, Emiliani C, Martino S, Santulli C, Torre L, Kenny JM, Puglia D. Keratins extracted from merino wool and brown alpaca fibers: thermal, mechanical and biological properties of plla based biocomposites. Mat Sci Eng. 2015;47(1):394–406.

    Article  Google Scholar 

  29. Zhou QH, Bao M, Yuan HH, Zhao SF, Dong W, Zhang YZ. Implication of stable jet length in electrospinning for collecting well-aligned ultrafine PLLA fibers. Polymer. 2013;54(25):6867–76.

    Article  Google Scholar 

  30. Shamshad A, Zeeshan K, Kyung WO, Ick-Soo K, Seong HK. zein/cellulose acetate hybrid nanofibers: electrospinning and characterization. Macromol Res. 2014;22(9):971–7.

    Article  Google Scholar 

  31. Salgado JC, Rapaport I, Asenjo JA. Prediction of retention times of proteins in hydrophobic interaction chromatography using only their amino acid composition. J Chromatogr A. 2005;1098(1–2):44–54.

    Article  Google Scholar 

  32. Lee KH, Kim HY, Ryu YJ, Kim KW, Choi SW. Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends. J Polym Sci Polym Phys. 2003;41(11):1256–62.

    Article  Google Scholar 

  33. Ujhelyiova A, Bolhova E, Marcincin A, Tino R. Blended polypropylene/polyethylene terephthalate fibres: crystallisation behavior of polypropylene and mechanical properties. Fibres Text East Eur. 2007;15(4):26–9.

    Google Scholar 

  34. Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mat Sci Eng. 2010;30(8):1204–10.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Key Projects in the National Science and Technology Pillar Program during the period of the 12th 5-year Plan (2013BAD16B09). The work was also supported by Key Projects in the Jilin Province Science and Technology Development Plan (20130206043NY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, X., Li, S. et al. Electrospun poly(l-lactide)/zein nanofiber mats loaded with Rana chensinensis skin peptides for wound dressing. J Mater Sci: Mater Med 27, 136 (2016). https://doi.org/10.1007/s10856-016-5749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5749-7

Keywords

Navigation