Skip to main content
Log in

Low temperature growth of ZnO nanotubes for fluorescence quenching detection of DNA

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this work, large-scale and single-crystalline ZnO nanotubes were fabricated by a simple technique from an aqueous solution at a low temperature of 65 °C. According to detailed morphology, structural and compositional analyses showed that the ZnO nanotubes [diameter ~200 nm (wall thickness ~50 nm); length ~1 µm] have single-crystallite with wurtzite structure. As-prepared ZnO nanotubes showed an effective fluorescence quenching for the detection of calf thymus DNA. In particular, increasing DNA concentrations (5–50 µM) into the fixed concentration of ZnO nanotubes (50 µM) progressively quenched the intrinsic fluorescence of nanotubes, which showed that the nanotubes fluorescence was efficiently quenched upon binding to DNA. At the highest ZnO-DNA molar ratios of 1:1.8, around 50.1 % of fluorescence quenching of DNA was observed. Significance of this study provides simple, cost-effective, and low temperature synthesis of ZnO nanotubes revealed better fluorescence property toward a platform of DNA sensor.

Graphical Abstract

ZnO nanotubes with diameter of ~200 nm (wall thickness ~50 nm) and length of about 1 µm prepared at low temperature (65 °C) showed fluorescence was efficiently quenched upon binding to DNA. In particular, around 50.1 % of DNA fluorescence quenching at the highest ZnO-DNA molar ratios of 1:1.8 was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. You CC, Miranda OR, Gider B, Ghosh PS, Kim I, Erdogan B, Krovi SA, Bunz UHF, Rotello VM. Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’ sensors. Nat Nanotechnol. 2007;2:318.

    Article  Google Scholar 

  2. Bunz UH, Rotello VM. Gold nanoparticle-fluorophore complexes: sensitive and discerning “noses” for biosystems sensing. Angew Chem Int Ed. 2010;49:3268.

    Article  Google Scholar 

  3. Haab BB. Applications of antibody array platforms. Curr Opin Biotechnol. 2006;17:415.

    Article  Google Scholar 

  4. Chen XQ, Zhou Y, Peng XJ, Yoon JY. Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev. 2010;39:2120.

    Article  Google Scholar 

  5. Zhang K, Zhou HB, Mei QS, Wang SH, Guan GJ, Liu RY, Zhang J, Zhang ZP. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc. 2011;133:8424.

    Article  Google Scholar 

  6. Han MY, Gao XH, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol. 2001;19:631.

    Article  Google Scholar 

  7. Wang ZL. Electron and ionic transport in high-radioactive silicate alkali-earth glasses. J Phys Conds Matter. 2004;16:829.

    Article  Google Scholar 

  8. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. ChemInform Abstract: room-temperature ultraviolet nanowire nanolasers. Science. 2001;292:1897.

    Article  Google Scholar 

  9. Zhang Z, Sun YH, Zhao YG, Li GP, Wu T. Manganite thin film/ZnO nanowire (nanosheets) p-n junctions. Appl Phys Lett. 2008;92:103113.

    Article  Google Scholar 

  10. Kind H, Yan HQ, Messer B, Law M, Yang PD. Nanowire ultraviolet photodetectors and optical switches. Adv Mater. 2002;14:158.

    Article  Google Scholar 

  11. Li YD, Li X, He R, Zhu J, Zhao X. Artificial lamellar mesostructures to WS 2 nanotubes. J Am Chem Soc. 2002;124:1411.

    Article  Google Scholar 

  12. Wang ZL, Kong XY, Ding Y, Gao PX, Hughes WL, Yang RS, Zhang Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv Funct Mater. 2004;14:943.

    Article  Google Scholar 

  13. Li QH, Gao T, Wang YG, Wang TH. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl Phys Lett. 2005;86:123117.

    Article  Google Scholar 

  14. Wang ZL. Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter. 2004;16:829.

    Article  Google Scholar 

  15. Vayssieres L, Keis K, Hagfeldt A, Lindquist S. Three-dimensional array of highly oriented crystalline zno microtubes. Chem Mater. 2001;13:4395.

    Article  Google Scholar 

  16. Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater. 2009;10:013001.

    Article  Google Scholar 

  17. Yang JH, Zheng JH, Zhai HJ, Yang LL, Liu L, Gao M. Solvothermal growth of highly oriented wurtzitestructured ZnO nanotube arrays on zinc foil. Cryst Res Technol. 2009;44:619.

    Article  Google Scholar 

  18. Wang Z, Li L. Highly ordered zinc oxide nanotubules synthesized within the anodic aluminum oxide template. Appl Phys A. 2002;74:201.

    Article  Google Scholar 

  19. Kong XH, Sun XM, Li XL, Li YD. Catalytic growth of ZnO nanotubes. Mater Chem Phys. 2003;82:997.

    Article  Google Scholar 

  20. Liang HW, Lu YM, Shen DZ, Li BH, Zhang ZZ, Shan CX, Zhang JY, Fan XW, Du GT. Growth of vertically aligned single crystal ZnO nanotubes by plasma-molecular beam epitaxy. Solid State Commun. 2006;137:182.

    Article  Google Scholar 

  21. Zhang BP, Binh NT, Wakatsuki K, Segawa Y, Yamada Y, Usami N, Kawasaki M, Koinuma H. Formation of highly aligned ZnO tubes on sapphire (0001) substrates. Appl Phys Lett. 2004;84:4098.

    Article  Google Scholar 

  22. Feng XJ, Feng L, Jin MH, Zhai J, Jiang L, Zhu DB. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned zno nanorod films. J Am Chem Soc. 2004;126:62–63. doi:10.1021/ja038636o.

    Article  Google Scholar 

  23. Chae KW, Zhang Q, Kim JS, Jeong YH, Cao G. Low-temperature solution growth of ZnO nanotube arrays. Beilstein J Nanotechnol. 2010;1:128–34.

    Article  Google Scholar 

  24. Vayssieres L, Keis K, Hagfeldt A, Lindquist SE. Three-dimensional array of highly oriented crystalline Zno microtubes. Chem Mater. 2001;13:4395–98.

    Article  Google Scholar 

  25. Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer; 2006, p. 278–82.

    Book  Google Scholar 

  26. Bresloff JL, Crothers DM. Equilibrium studies of ethidium-polynucleotide interactions. Biochemistry. 1981;20:3547–53.

    Article  Google Scholar 

  27. Yu QJ, Fu WY, Yu CL, Yang HB, Wei RH, Li MH, Liu SK, Sui YM, Liu ZL, Yuan MX, Zou GY. Fabrication and optical properties of large-scale zno nanotube bundles via a simple solution route. J Phys Chem C. 2007;111:17521.

    Article  Google Scholar 

  28. Li Y, Meng GW, Zhang LD, Phillipp F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl Phys Lett. 2000;76:2011.

    Article  Google Scholar 

  29. Decremps F, Ellicer-Porres J, Saitta AM, Chervin JC, Polian A. High-pressure Raman spectroscopy study of wurtzite ZnO. Phys Rev B. 2002;65:092101.

    Article  Google Scholar 

  30. Yu WD, Li XM, Gao XD, Qiu PS, Cheng WX, Ding AL. Effect of zinc sources on the morphology of ZnO nanostructures and their photoluminescence properties. Appl Phys A. 2004;79:453.

    Article  Google Scholar 

  31. Wahab R, Ansari SG, Kim YS, Seo HK, Shin HS. Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method. Appl Surf Sci. 2007;253(18):7622.

    Article  Google Scholar 

  32. Yang CL, Wang JN, Ge WK, Guo L, Yang SH, Shen DZ. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. J Appl Phys. 2001;90:4489.

    Article  Google Scholar 

  33. Wong EM, Hoertz PG, Liang CJ, Shi BM, Meyer GJ, Searson PC. Influence of organic capping ligands on the growth kinetics of ZnO nanoparticles. Langmuir. 2001;17:8362.

    Article  Google Scholar 

  34. Spanhel L, Andersen A. Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc. 1991;113:2826.

    Article  Google Scholar 

  35. Sun H, Zhang Q-F, Wu JL. Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure. Nanotechnology. 2006;17:2271.

    Article  Google Scholar 

  36. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P. Catalytic growth of zinc oxide nanowires by vapor transport. Science. 2001;292:1987.

    Article  Google Scholar 

  37. Mulligan RF, Iliadis AA, Kofinas PJ. Synthesis and characterization of ZnO nanostructures templated using diblock copolymers. Appl Polym Sci. 2003;89:1058.

    Article  Google Scholar 

  38. Satriano C, Fragala ME, Aleeva Y. Ultrathin and nanostructured ZnO-based films for fluorescence biosensing applications. Sens Actuators B. 2012;161:191.

    Article  Google Scholar 

  39. Khun K, Ibupoto ZH, Chey CO, Lu Jun, Nur O, Willander M. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor. Appl Surface Sci. 2013;268:37–43.

    Article  Google Scholar 

  40. Zhao M, Huang J, Zhou Y, Chen Q, Pan X, He H, Ye Z. A single mesoporous ZnO/Chitosan hybrid nanostructure for a novel free nanoprobe type biosensor. Biosens Bioelectron. 2013;43:226–30.

    Article  Google Scholar 

  41. Supriya S, Pranab S. Understanding the interaction of DNA–RNA nucleobases with different ZnO nanomaterials. Phys Chem Chem Phys. 2014;16:15355.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Internal Research Grant, Alfaisal University (IRG 2014) project No. 4050101011410. The authors gratefully acknowledge the continued support from Alfaisal University and its office of Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faheem Ahmed or Edreese Alsharaeh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F., Arshi, N., Dwivedi, S. et al. Low temperature growth of ZnO nanotubes for fluorescence quenching detection of DNA. J Mater Sci: Mater Med 27, 189 (2016). https://doi.org/10.1007/s10856-016-5805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5805-3

Keywords

Navigation