Skip to main content

Advertisement

Log in

The deposition of strontium and zinc Co-substituted hydroxyapatite coatings

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The in vitro and in vivo performance of hydroxyapatite (HAp) coatings can be modified by the addition of different trace ions, such as silicon (Si), lithium (Li), magnesium (Mg), zinc (Zn) or strontium (Sr) into the HAp lattice, to more closely mirror the complex chemistry of human bone. To date, most of the work in the literature has considered single ion-substituted materials and coatings, with limited reports on co-substituted calcium phosphate systems. The aim of this study was to investigate the potential of radio frequency magnetron sputtering to deposit Sr and Zn co-substituted HAp coatings using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The FTIR and XPS results highlight that all of the Sr, Zn and Sr-Zn co-substituted surfaces produced are all dehydroxylated and are calcium deficient. All of the coatings contained HPO4 2− groups, however; only the pure HAp coating and the Sr substituted HAp coating contained additional CO3 2− groups. The XRD results highlight that none of the coatings produced in this study contain any other impurity CaP phases, showing peaks corresponding to that of ICDD file #01-072-1243 for HAp, albeit shifted to lower 2θ values due to the incorporation of Sr into the HAp lattice for Ca (in the Sr and Sr-Zn co-substituted surfaces only). Therefore, the results here clearly show that RF magnetron sputtering offers a simple means to deliver Sr and Zn co-substituted HAp coatings with enhanced surface properties.

Graphical Abstract

(a) XRD patterns for RF magnetron sputter deposited hydroxyapatite coatings and (b)-(d) for Sr, Zn and Sr-Zn co-substituted coatings, respectively. The XPS spectra in (b) confirms the presence of a HA sputter deposited coating as opposed to (c) XPS spectra for a Sr-Zn co-substituted sputter deposited coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dorozhkin SV. Calcium orthophosphates: Applications in Nature, Biology, and Medicine. Singapore: Pan Stanford Publishing; 2012.

    Book  Google Scholar 

  2. Kokubo T. Bioceramics and their clinical applications. England: Woodhead Publishing; 2008.

    Book  Google Scholar 

  3. Ben-Nissan B, Choi AH, Roest R, Latella BA, Bendavid A. Adhesion of hydroxyapatite on titanium medical implants. In: Mucalo M, editor. Hydroxyapatite (HAp) for biomedical applications. Cambridge: Woodhead publishing series in biomaterials; 2015. pp. 21–52.

    Chapter  Google Scholar 

  4. Zhang BGX, Myers DE, Wallace GG, Brandt M, Choong PFM. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. Int J Mol Sci. 2014;15:11878–921.

    Article  Google Scholar 

  5. Drevet R, Benhayoune H. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties. Mater Sci Eng C Mater Biol Appl. 2013;33:4260–5.

    Article  Google Scholar 

  6. Lindahl C, Pujari-Palmer S, Hoess A, Ott M, Engqvist H, Xia W. The influence of Sr content in calcium phosphate coatings. Mater Sci Eng C. 2015;53:322–30.

    Article  Google Scholar 

  7. Shepherd JH, Shepherd DV, Best SM. Substituted hydroxyapatites for bone repair. J Mater Sci: Mater Med. 2012;23:2335–47.

    Google Scholar 

  8. Mourińo V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J Roy Soc Interface. 2012;9:401–19.

    Article  Google Scholar 

  9. Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010;6:1882–94.

    Article  Google Scholar 

  10. Stanić V, Dimitrijević S, Antić-Stanković J, Mitrić M, Jokić B, Plećaš IB, et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256:6083–9.

    Article  Google Scholar 

  11. Shanmugam S, Gopal B. Copper substituted hydroxyapatite and fluorapatite: synthesis, characterization and antimicrobial properties. Ceram Int. 2014;40:15655–62.

    Article  Google Scholar 

  12. Feng QL, Cui FZ, Kim TN, Kim JW. Ag-substituted hydroxyapatite coatings with both antimicrobial effects and biocompatibility. J Mater Sci Lett. 1999;18:559–61.

    Article  Google Scholar 

  13. Gopi D, Shinyjoy E, Kavitha L. Synthesis and spectral characterization of silver/magnesium co-substituted hydroxyapatite for biomedical applications. Spectrochim Acta—Part A Mol Biomol Spectrosc. 2014;127:286–91.

    Article  Google Scholar 

  14. Kannan S, Goetz-Neunhoegffer F, Neubauer J, Ferreira JMF. Cosubstituition of zinc and strontium in β-triclacium phosphate: synthesis and charaterisation. Jn Amer Cer Soc. 2011;94:230–5.

    Article  Google Scholar 

  15. Tang XL, Xiao XF, Liu RF. Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Mater Lett. 2005;59(29-30):3841–6.

    Article  Google Scholar 

  16. Tian T, Jiang D, Zhang J, Lin Q. Synthesis of Si-substituted hydroxyapatite by a wet mechanochemical method. Mater Sci Eng C. 2008;28(1):57–63.

    Article  Google Scholar 

  17. Wakamura M, Kandori K, Ishikawa T. Surface structure and composition of calcium hydroxyapatites substituted with Al(III), La(III) and Fe(III) ions. Colloids Surf A. 2000;164(2-3):297–305.

    Article  Google Scholar 

  18. Lou W, Dong Y, Zhang H, Jin Y, Hu X, Ma J, et al. Preparation and characterization of lanthanum-incorporated hydroxyapatite coatings on titanium substrates. Int J Mol Sci. 2015;16(9):21070–86.

    Article  Google Scholar 

  19. Zhang L, Li H, Li K, Zhang Y, Lu J, Li W. La and F co-substituted hydroxyapatite bioactive coating reinforced by SiC nanowire/ZrO2 hybrid materials for carbon/carbon composites. Ceram Int. 2016;42:2164–9.

    Article  Google Scholar 

  20. Bianco A, Cacciotti I, Lombardi M, Montanaro L, Bemporad E, Sebastiani M. F-substituted hydroxyapatite nanopowders: thermal stability, sintering behaviour and mechanical properties. Ceram Int. 2010;36(1):313–22.

    Article  Google Scholar 

  21. Rodriguez-Valencia C, Lopez-Alvarez M, Cochon-Cores B, Pereiro I, Serra J, Gonzalez P. Novel selnium doped hydroxyapatite coatings for biomaedical applications. J Biomed Mater Res A. 2013;101:853–61.

    Article  Google Scholar 

  22. Kaygili O, Dorozhkin SV, Keser S. Synthesis and characterization of Ce-substituted hydroxyapatite by sol-gel method. Mater Sci Eng C. 2014;42:78–82.

    Article  Google Scholar 

  23. Nasiri-Tabrizi B, Pingguan-Murphy B, Basirun WJ, Baradaran S. Crystallization behavior of tantalum and chlorine co-substituted hydroxyapatite nanopowders. J Ind Eng Chem. 2016;33:316–25.

    Article  Google Scholar 

  24. Kannan S, Rebelo A, Ferreira JMF. Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites. J Inorg Biochem. 2006;100(10):1692–7.

    Article  Google Scholar 

  25. Sang Cho J, Um SH, Su Yoo D, Chung YC, Hye Chung S, Lee JC, et al. Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability. J Biomed Mater Res—Part B Appl Biomater. 2014;102(5):1046–62.

    Article  Google Scholar 

  26. Zyman Z, Tkachenko M. Sodium-carbonate co-substituted hydroxyapatite ceramics. Process Appl Ceram. 2013;7(4):153–7.

    Article  Google Scholar 

  27. Kannan S, Ventura JMG, Ferreira JMF. Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalciumphosphate mixtures. Ceram Int. 2007;33(8):1489–94.

    Article  Google Scholar 

  28. Nordström E, Karlsson K. Chemical characterization of a potassium hydroxyapatite prepared by soaking in potassium chloride and carbonate solutions. Biomed Mater Eng. 1992;2(4):185–9.

    Google Scholar 

  29. Yasukawa A, Ueda E, Kandori K, Ishikawa T. Preparation and characterization of carbonated barium-calcium hydroxyapatite solid solutions. J Colloid Interface Sci. 2005;288(2):468–74.

    Article  Google Scholar 

  30. Hanna AA, Sherief MA, Aboelenin RM, Mousa SM. Preparation and characterizations of barium hydroxyapatite as ion exchanger. Can J Pure Appl Sci. 2010;4:1087–93.

    Google Scholar 

  31. Merry JC, Gibson IR, Best SM, Bonfield W. Synthesis and characterization of carbonate hydroxyapatite. J Mater Sci Mater Med. 1998;9(12):779–83.

    Article  Google Scholar 

  32. Aligul B, Koseoglu NC, Aslan MH, Oral AY. Microstructural study of Mn and Si co-substituted hydroxyapatite thin films produced by a sol–gel method. Adv. Eng. Mater. 2009;11:B77–B81.

    Article  Google Scholar 

  33. Ignjatović N, Ajduković Z, Savić V. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. J Mater Sci Mater Med. 2013;24(2):343–54.

    Article  Google Scholar 

  34. Swain S, Rautray TR, Narayanan R. Sr, Mg, and Co substituted hydroxyapatite coating on TiO2 nanotubes formed by electrochemical methods. Adv Sci Lett. 2016;22:482–7.

    Article  Google Scholar 

  35. Melnikov P, Teixeira AR, Malzac A, Coelho MDB. Gallium-containing hydroxyapatite for potential use in orthopedics. Mater Chem and Phy. 2009;117:86–90.

    Article  Google Scholar 

  36. Wakamura M. Photocatalysis by calcium hydroxyapatite modified by Ti (IV). Fujitsu Sci Tech J. 2005;41:181–90.

    Google Scholar 

  37. Hu A, Li M, Chang C, Mao D. Preparation and characterization of a titanium-substituted hydroxyapatite photocatalyst. J Mol Cat A: Chemical. 2007;267:79–85.

    Article  Google Scholar 

  38. Wiglusz RJ, Kedziora A, Lukowiak A, Doroszkiewicz W, Strek W. Hydroxyapatite and europium (III) doped hydroxyapatite as a carrier for silver nanoparticles and their antimicrobial activity. J Biomed Nanotech. 2012;8:605–12.

    Article  Google Scholar 

  39. Capanema NSV, Mansur AAP, Carvalho SM, Silva ARP, Ciminelli VS, Mansur HS. Niobium-doped hydroxyapatite bioceramics: synthesis, characterization and in vitro cytocompatibility. Mater. 2015;8:4191–209.

    Article  Google Scholar 

  40. Webster TJ, Ergun C, Doremus RH, Bizios R. Hydroxyapatite with substituted magnesium, zinc, cadmium and yttrium. II Mechanisms of osteoblast adhesion. J Biomed Mater Res. 2002;59:312–7.

    Article  Google Scholar 

  41. Terra J, Gonzalez GB, Rossi AM, Eon JG, Ellis DE. Theoretical and experimental studies of substitution of cadmium into hydroxyapatite. Phys Chem Chem Phys. 2010;21:15490–500.

    Article  Google Scholar 

  42. Kaygili O, Dorozhkin SV, Ates T, Gursoy NC, Keser S, Yakuphanoglu F, Selçuk AB. Structural and dielectric properties of yttrium-substituted hydroxyapatites. Mater Sci Eng C Mater Biol Appl. 2015;47:333–8.

    Article  Google Scholar 

  43. Shainburg APM, Valerio P, Zonari A, Oktar FN, Ozyegin LS, Craca MPF, Leite MF, Goes AM. Attachment and proliferation of osteoblasts on lithium-hydroxyapatite composites. Adv Mat Sci Eng. 2012;2012:10. doi:10.1155/2012/650574. Accessed 28 July 2014.

    Google Scholar 

  44. Alshemary AZ, Goh YF, Akram M, Kadir MRA, Hussain R. Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite. Mater Res Bull. 2013;48:2106–10.

    Article  Google Scholar 

  45. Ligot S, Godfroid T, Music D, Bousser E, Schneider JM, Snyders R. Tantalum-doped hydroxyapatite thin films: synthesis and characterization. Acta Materialia. 2012;60:3435–43.

    Article  Google Scholar 

  46. Sishkumar S, Louis K, Shinyjoy E, Gopi D. Tailoring the Sm/Gd-substituted hydroxyapatite coating on biomedical AISI 316L SS: exploration of corrosion resistance, protein profiling, osteocompatibility, and osteogenic differentiation for orthopedic implant applications. Ind. Eng. Chem. Res. 2016;55:6331–44.

    Article  Google Scholar 

  47. Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomater. 2004;25:2111–21.

    Article  Google Scholar 

  48. Kong D, Long D, Wu Y, Zhou C. Mechanical properties of hydroxyapatite-zirconia coatings prepared by magnetron sputtering. Trans. Nonferrous Met. Soc. China. 2012;22:104–10.

    Article  Google Scholar 

  49. Cox SC, Jamshidi P, Grover LM, Mallick KK. Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C Mater Biol Appl. 2014;35:106–14.

    Article  Google Scholar 

  50. Aina V, Bergandi L, Lusvardi G, Malavasi G, Imrie FE, Gibson IR, Cerrato G, Ghigo D. Sr-containing hydroxyapatite: morphologies of HAp crystals and bioactivity on osteoblast cells. Mater Sci Eng C Mater Biol Appl. 2013;33:1132–42.

    Article  Google Scholar 

  51. Aryal S, Matsunaga K, Ching WY. Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP). J Mech Behav Biomed Mater. 2015;47:135–46.

    Article  Google Scholar 

  52. Shepherd D. Zinc-substituted hydroxyapatite for the inhibition of osteoporosis. In: Mucalo M, editor. Hydroxyapatite (HAp) for biomedical applications. Cambridge: Woodhead publishing series in biomaterials; 2015. pp. 107–26.

    Chapter  Google Scholar 

  53. Stipniece L, Salma-Ancane K, Borodajenko N, Sokolova M, Jakovlevs D, Berzina-Cimdina L. Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceram Int. 2014;40:3261–7.

    Article  Google Scholar 

  54. Drouet C, Carayon MT, Combes C, Rey C Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: a preamble to the activation of bone repair materials. Mater Sci and Eng C. 2008;28:1544–50.

  55. Ravi ND, Balu R, Kumar TTS. Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. J Am Ceram Soc. 2012;95:2700–8.

    Article  Google Scholar 

  56. Kaygili O, Keser S, Komc M, Eroksuz Y, Dorozhkin SV, Ates T, Ozercan IH, Tatar C, Yakuphanoglu F. Strontium substituted hydroxyapatites: synthesis and determination of their structural properties, in vitro and in vivo performance. Mater Sci Eng C Mater Biol Appl. 2015;55:538–46.

    Article  Google Scholar 

  57. Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomaterialia. 2007;3:961–9.

    Article  Google Scholar 

  58. Kumar GS, Thamizhavel A, Yokogawa Y, Kalkura SN, Girija EK. Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Mater Chem Phys. 2012;134:1127–35.

    Article  Google Scholar 

  59. Ramya JR, Arul KT, Elayaraja K, Kalkura SN. Physicochemical and biological properties of iron and zinc ions co-doped nanocrystalline hydroxyapatite, synthesized by ultrasonication. Ceram Int. 2014;40:16707–17.

    Article  Google Scholar 

  60. Gopi D, Ramyaa S, Rajeswaria D, Karthikeyana P, Kavitha L. Strontium, cerium co-substituted hydroxyapatite nanoparticles: synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloid Surface A. 2014;45:172–80.

    Article  Google Scholar 

  61. Huang Y, Zhang X, Mao H, Li T, Zhao R, Yan Y, Pang X. Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method. RSC Adv. 2015;5:17076–86.

    Article  Google Scholar 

  62. Kaygili O, Keser S. Sol–gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites. Mater Lett. 2015;141:161–4.

    Article  Google Scholar 

  63. Huang T, Xiao Y, Wang S, Huang Y, Liu X, Wu F, Gu Z. Nanostructured Si, Mg, CO3 2− substituted hydroxyapatite coatings deposited by liquid precursor plasma spraying: synthesis and characterization. J Thermal Spray Tech. 2011;20:829–36.

    Article  Google Scholar 

  64. O’Sullivan C, O’Hare P, O’Leary ND, Crean AM, Ryan K, Dobson ADW, O’Neill L. Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process. J. Biomed. Mat. Res B: Appl. Biomater. 2010;95B:141–9.

    Article  Google Scholar 

  65. van Dijk K, Schaeken HG, Wolke JGC, Maree CHM, Habraken FHPM, Verhoeven J, Jansen JA. Influence of discharge power level on the properties of hydroxyapatite films deposited on Ti6A14V with RF magnetron sputtering. J Biomed Mat Res. 1995;29:269–76.

    Article  Google Scholar 

  66. Yonggang Y, Wolke JGC, Yubao L, Jansen JA. The influence of discharge power and heat treatment on calcium phosphate coatings prepared by RF magnetron sputtering deposition. J Mater Sci: Mater Med. 2007;18:1061–9.

    Google Scholar 

  67. Boyd AR, Akay M, Meenan BJ. Influence of target surface degradation on the properties of RF magnetron‐sputtered calcium phosphate coatings. Surf Inter Anal. 2003;35:188–98.

    Article  Google Scholar 

  68. Boyd AR, Meenan BJ, Leyland NS. Surface characterisation of the evolving nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin films after exposure to physiological solution. Surf Coat Tech. 2006;200:6002–13.

    Article  Google Scholar 

  69. Boyd AR, O’Kane C, Meenan BJ. Control of calcium phosphate thin film stoichiometry using multi-target sputter deposition. Surf Coat Tech. 2013;233:131–9.

    Article  Google Scholar 

  70. Thian ES, Huang J, Best SM, Barber ZH, Bonfield W. Surface modification of magnetron-sputtered hydroxyapatite thin films via silicon substitution for orthopaedic and dental applications. Surf Coat Technol. 2011;205:3472–7.

    Article  Google Scholar 

  71. Ozeki K, Hoshino T, Aoki H, Masuzawa T. Phase composition of sputtered film from a mixture of hydroxyapatite and strontium-apatite. J Mater Sci Technol. 2013;29:1–6.

    Article  Google Scholar 

  72. Boyd A, Randolph LD, Rutledge L, Meenan BJ. Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique. Mater Sci & Eng C. 2015;46:290–300.

    Article  Google Scholar 

  73. Boyd A, Rutledge L, Randolph LD, Mutreja I, Meenan BJ. The deposition of strontium-substituted hydroxyapatite coatings. J Mater Sci: Mater Med. 2015;26:1–14.

    Google Scholar 

  74. Li MO, Xiao XF, Liu RF, Chen CY, Huang LZ. Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci: Mater Med. 2008;19(2):797–803.

    Google Scholar 

  75. Quilitz M, Steingröver K, Veith M. Effect of the Ca/P ratio on the dielectric properties of nanoscaled substoichiometric hydroxyapatite. J Mater Sci: Mater Med. 2010;21:399–405.

    Google Scholar 

  76. Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 2002;59:697–708.

    Article  Google Scholar 

  77. Fadeeva IV, Bakunova NV, Komlev VS, Medvecký L, Fomin AS, Gurin AN, Barinov SM. Zinc- and silver- substituted hydroxyapatite: synthesis and properties. Doklady Akademii Nauk. 2012;442:780–3.

    Google Scholar 

  78. Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, Aizawa M. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci: Mater Med. 2013;24:437–45.

    Google Scholar 

  79. Yu T, Ye J, Wang Y. Preparation and characterization of a novel strontium-containing calcium phosphate cement with the two-step hydration process. Acta Biomater. 2009;5:2717–27.

    Article  Google Scholar 

  80. Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomater. 2010;31:1465–85.

    Article  Google Scholar 

  81. Yang Y, Perez-Amodio S, Barre‘ re-de Groot FYF, Everts V, van Blitterswijk CA, Habibovic P. The effects of inorganic additives to calcium phosphate on in vitro behaviour of osteoblasts and osteoclasts. Biomater. 2010;31:2976–89.

    Article  Google Scholar 

  82. Kim H, Camata RP, Chowdhury S, Vohra YK. In vitro dissolution and mechanical behavior of c-axis preferentially oriented hydroxyapatite thin films fabricated by pulsed laser deposition. Acta Biomater. 2010;6:3234–41.

    Article  Google Scholar 

  83. Wopenka B, Pasteris JD. A mineralogical perspective on the apatite in bone. Mat Sci Eng C. 2005;25:131–43.

    Article  Google Scholar 

  84. Suganthi RV, Elayaraja K, Joshy MIA, Chandra VS, Girija EK, Kalkura SN. Fibrous growth of strontium substituted hydroxyapatite and its drug release. Mat Sci Eng C. 2010;31:593–9.

    Article  Google Scholar 

  85. Ren F, Xin R, Ge X, Leng Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomaterialia. 2009;5:3141–9.

    Article  Google Scholar 

  86. Vignoles M, Bone G, Young RA. Occurrence of nitrogenous species in precipitated B-type carbonated hydroxyapatites. Calcif Tissue Int. 1987;40:64–70.

    Article  Google Scholar 

  87. Kavitha M, Subramanian R, Narayanan R, Udhayabanu V. Solution combustion synthesis and characterization of strontium substituted hydroxyapatite nanocrystals. Powd Tech. 2014;253:129–37.

    Article  Google Scholar 

  88. Norhidayu D, Sopyan I, Ramesh S. Development of zinc doped hydroxyapatite for bone implant applications. ICCBT. 2008;F-24:257–70.

    Google Scholar 

  89. Zreiqat H, Ramaswamy Y, Wu C, Paschalidis A, Lu Z, James B, Birke O, McDonald M, Little D, Dunstan CR. The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering. Biomater. 2010;31:3175–84.

    Article  Google Scholar 

  90. Imrie FE, Aina V, Lusvardi G, Malavasi G, Gibson IR, Cerrato G, Annaz B. Synthesis and characterisation of strontium and magnesium co-substituted biphasic calcium phosphates. Key Eng Mater. 2013;529-30:88–93.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Research Programme No. 2014.10-4/VPP-3/21 “Multifunctional materials and composites, photonics and nanotechnology (IMIS2)” Project No. 4 “Nanomaterials and nanotechnologies for medical applications”. The authors would also like to acknowledge the PhD funding provided by of the Department of Employment and Learning (Northern Ireland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boyd.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, L., Salma-Ancane, K., Stipniece, L. et al. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings. J Mater Sci: Mater Med 28, 51 (2017). https://doi.org/10.1007/s10856-017-5846-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5846-2

Keywords

Navigation