Skip to main content
Log in

Electrospun 3D composite scaffolds for craniofacial critical size defects

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Critical size defects in the craniofacial region can be effectively treated using three dimensional (3D) composite structures mimicking natural extra cellular matrix (ECM) and incorporated with bioactive ceramics. In this study we have shown that the dynamic liquid bath collector can be used to form electrospun polycaprolactone (PCL)—hydroxyapatite (HA) composite structure as unique 3D scaffold. The structure was found to have three distinct sections (base, stem and head) based on the mechanism of its formation and morphology. The size of the head portion was around 15 mm and was found to vary with the process parameters. Scanning electron microscopy (SEM) analysis revealed that the base had random fibres while the fibres in stem and head sections were aligned but perpendicular to each other. X-ray diffraction (XRD) analysis also showed an increase in the crystallinity index of the fibres from base to head section. Cytotoxicity and cytocompatibility studies using human osteosarcoma (HOS) cells showed good cell adhesion and proliferation indicating the suitability of the 3D structure for craniofacial graft applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li Y, Chen S, Li L, Qin L, Wang X-L, Lai Y-X. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Transl. 2015;3:95–104.

    Google Scholar 

  2. Brierly GI, Tredinnick S, Lynham A, Woodruff MA. Critical sized Mandibular defect regeneration in preclinical in vivo models. Curr Mol Biol Rep. 2016;2:83–9.

    Article  Google Scholar 

  3. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19:485–502.

    Article  Google Scholar 

  4. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med. 2006;10:7–19.

    Article  Google Scholar 

  5. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, et al. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci. 2014;39:862–90.

    Article  Google Scholar 

  6. Teo WE, Liao S, Chan CK, Ramakrishna S. Remodeling of three-dimensional hierarchically organized nanofibrous assemblies. Curr Nanosci. 2008;4:361–9.

    Article  Google Scholar 

  7. Lee Y-S, Livingston Arinzeh T. Electrospun nanofibrous materials for neural tissue engineering. Polymers. 2011;3:413–26.

    Article  Google Scholar 

  8. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. The influence of electrospun aligned poly(ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials. 2008;29:2899–906.

    Article  Google Scholar 

  9. Smit E, Buttner U, Sanderson RD. Continuous yarns from electrospun fibers. Polymer. 2005;46:2419–23.

    Article  Google Scholar 

  10. Yokoyama Y, Hattori S, Yoshikawa C, Yasuda Y, Koyama H, Takato T, et al. Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett. 2009;63:754–6.

    Article  Google Scholar 

  11. Ki CS, Kim JW, Hyun JH, Lee KH, Hattori M, Rah DK, et al. Electrospun three-dimensional silk fibroin nanofibrous scaffold. J Appl Polym Sci. 2007;106:3922–8.

    Article  Google Scholar 

  12. Teo WE, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S. A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer. 2007;48:3400–5.

    Article  Google Scholar 

  13. Yousefzadeh M, Latifi M, Amani-tehran M, Teo W, Ramakrishna S. A note on the 3D structural design of electrospun nanofibers. J Eng Fiber Fabr. 2012;7:17–23.

    Google Scholar 

  14. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ. Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules. 2006;7:415–8.

    Article  Google Scholar 

  15. Miyauchi M, Miao J, Simmons TJ, Lee JW, Doherty TV, Dordick JS, Linhardt RJ. Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose. Biomacromolecules. 2010;11:2440–5.

    Article  Google Scholar 

  16. Kim M, Son J, Lee H, Hwang H, Choi CH, Kim G. Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process. Curr Appl Phys. 2014;14:1–7.

    Article  Google Scholar 

  17. Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW. Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem. 2011;93:1539–50.

    Google Scholar 

  18. Pişkin E, İşoğlu IA, Bölgen N, Vargel I, Griffiths S, Çavuşoğlu T, Korkusuz P, Guzel E, Cartmell S. In vivo performance of simvastatin-loaded electrospun spiral-wound polycaprolactone scaffolds in reconstruction of cranial bone defects in the rat model. J Biomed Mater Res Part A. 2009;90A:1137–51.

    Article  Google Scholar 

  19. Díaz E, Sandonis I, Valle MB. In vitro degradation of poly(caprolactone)/nHA composites. J Nanomater. 2014;2014:1–8.

    Article  Google Scholar 

  20. Shin S-H, Purevdorj O, Castano O, Planell JA, Kim H-W. A short review: recent advances in electrospinning for bone tissue regeneration. J Tissue Eng. 2012;3:2041731412443530.

    Article  Google Scholar 

  21. Hutmacher D. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  Google Scholar 

  22. Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S. Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One. 2011;6:1–8.

    Article  Google Scholar 

  23. Kostakova E, Seps M, Pokorny P, Lukas D. Study of polycaprolactone wet electrospinning process. Express Polym Lett. 2014;8:554–64.

    Article  Google Scholar 

  24. Bordes C, Fréville V, Ruffin E, Marote P, Gauvrit JY, Briançon S, et al. Determination of poly(ε-caprolactone) solubility parameters: application to solvent substitution in a microencapsulation process. Int J Pharm. 2010;383:236–43.

    Article  Google Scholar 

  25. Catledge S, Clem WC, Shrikishen N, Chowdhury S, Stanishevsky V, Koopman M, Vohra YK. An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed Mater. 2007;2:142–50.

    Article  Google Scholar 

  26. Liu JY, Reni L, Wei Q, Wu JL, Liu S, Wang YJ, et al. Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites. Express Polym Lett. 2011;5:742–52.

    Article  Google Scholar 

  27. Rameshbabu N, Rao KP, Kumar TSS. Acclerated microwave processing of nanocrystalline hydroxyapatite. J Mater Sci. 2005;40:6319–23.

    Article  Google Scholar 

  28. Wehrhan F, Amann K, Molenberg A, Lutz R, Neukam FW, Schlegel KA. PEG matrix enables cell-mediated local BMP-2 gene delivery and increased bone formation in a porcine critical size defect model of craniofacial bone regeneration. Clin Oral Implants Res. 2012;23:805–13.

    Article  Google Scholar 

  29. Hong S, Kim G. Fabrication of size-controlled three-dimensional structures consisting of electrohydrodynamically produced polycaprolactone micro/nanofibers. Appl Phys A Mater Sci Process. 2011;103:1009–14.

    Article  Google Scholar 

  30. Eva K, Michal Š, Pavel P, Jana H, David L. Wet electrospun polycaprolactone fibrous materials. Proc. NANOCON 2013. 2013. Article ID: 1968.

  31. Wang X, Zhao H, Turng L, Li Q. Crystalline morphology of electrospun poly(ε-caprolactone) (PCL) nanofibers. Ind Eng Chem Res. 2013;52:4939–49.

    Article  Google Scholar 

  32. Lee KH, Kim HY, Khil MS, Ra YM, Lee DR. Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer. 2003;44:1287–94.

    Article  Google Scholar 

  33. Wong SC, Baji A, Leng S. Effect of fiber diameter on tensile properties of electrospun poly(ε-caprolactone). Polymer. 2008;49:4713–22.

    Article  Google Scholar 

  34. Jin L, Wang T, Feng Z-Q, Zhu M, Leach MK, Naim YI, et al. Fabrication and characterization of a novel fluffy polypyrrole fibrous scaffold designed for 3D cell culture. J Mater Chem. 2012;22:18321.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Seeram Ramakrishna, National University of Singapore, Singapore for his constant encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Sampath Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrapani, V.Y., Kumar, T.S.S., Raj, D.K. et al. Electrospun 3D composite scaffolds for craniofacial critical size defects. J Mater Sci: Mater Med 28, 119 (2017). https://doi.org/10.1007/s10856-017-5933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5933-4

Navigation