Skip to main content
Log in

Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In this paper, a biophysical neural network model consisting of a pyramidal neuron, an interneuron, and the astrocyte is studied. The corresponding dynamical properties are mainly investigated by using numerical simulations. The results show that the presence of the adenosine triphosphate and of the interneuron impacts the overall neural activity. It is shown that the fluxes of calcium through the cellular membrane strongly affect the modulation of the neural activity arising from the astrocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haydon, P.G., Carmignoto, G.: Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 86, 1009–1031 (2006). doi:10.1152/physrev.00049.2005

    Article  Google Scholar 

  2. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  3. Finkbeiner, S.M.: Glial calcium. Glia 9, 83–104 (1993). doi:10.1002/glia.440090202

    Article  Google Scholar 

  4. Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S., Haydon, P.G.: Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994). doi:10.1038/369744a0

    Article  ADS  Google Scholar 

  5. Porter, J.T., McCarthy, K.D.: Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073–5081 (1996)

    Google Scholar 

  6. Porter, J.T., McCarthy, K.D.: Astrocytic neurotransmitter receptors in situ and in vivo. Prog. Neurobiol. 51, 439–455 (1997). doi:10.1016/S0301-0082(96)00068-8

    Article  Google Scholar 

  7. Kang, J., Jiang, L., Goldman, S.A., Nedergaard, M.: Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998). doi:10.1038/3684

    Article  Google Scholar 

  8. Parpura, V., Haydon, P.: Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc. Natl. Acad. Sci. U. S. A. 97, 8629–8634 (2000). doi:10.1073/pnas.97.15.8629

    Article  ADS  Google Scholar 

  9. Wang, Z., Haydon, P.G., Yeung, E.S.: Direct observation of calcium-independent intercellular ATP signalling in astrocytes. Anal. Chem. 72, 2001–2007 (2000). doi:10.1021/ac9912146

    Article  Google Scholar 

  10. Nobile, M., Monaldi, I., Alloiso, S., Cugnoli, C., Ferroni, S.: ATP-induced, sustained signalling in cultured rat cortical astrocytes: evidence for a non-capacitive, P2X7-like-mediated calcium entry. FEBS Lett. 538, 71–76 (2003). doi:10.1016/S0014-5793(03)00129-7

    Article  Google Scholar 

  11. Fellin, T., Carmignoto, G.: Neuron-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J. Physiol. 559.1, 3–15 (2004)

    Article  Google Scholar 

  12. Perea, G., Araque, A.: Synaptic regulation of the astrocyte calcium signal. J. Neural Transm. 112, 127–135 (2005). doi:10.1007/s00702-004-0170-7

    Article  Google Scholar 

  13. Zhang, Q., Haydon, P.G.: Roles for gliotransmission in the nervous system. J. Neural Transm. 112, 121–125 (2005). doi:10.1007/s00702-004-0119-x

    Article  Google Scholar 

  14. Koizumi, S., Fujishita, K., Inoue, K.: Regulation of cell-to-cell communication mediated by astrocytic ATP in the CNS. Purinergic Signal. 1, 211–217 (2005). doi:10.1007/s11302-005-6321-y

    Article  Google Scholar 

  15. Duan, S., Anderson, C.M., Keung, E.C., Chen, Y., Swanson, R.A.: P2X7 receptor-mediate release of excitatory amino acids from astrocytes. J. Neurosci. 23, 1320–1328 (2003)

    Google Scholar 

  16. Fields, R.D., Burnstock, G.: Purinergic signalling in neuron-glia interactions. Nat. Rev., Neurosci. 7, 423–436 (2006). doi:10.1038/nrn1928

    Article  Google Scholar 

  17. Pankratov, Y., Lalo, U., Krishtal, O., Verkhratsky, A.: Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J. Physiol. 542(2), 529–536 (2002). doi:10.1113/jphysiol.2002.021956

    Article  Google Scholar 

  18. Zhang, J.M., Wang, H.K., Ye, C.Q., Ge, W., Chen, Y., Jiang, Z.L., Wu, C.P., Poo, M.M., Duan, S.: ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982 (2003). doi:10.1016/S0896-6273(03)00717-7

    Article  Google Scholar 

  19. Khakh, B.S.: Molecular physiology of P2X receptors and ATP signalling at synapses. Nat. Rev. Neurosci. 2, 165–174 (2001). doi:10.1038/35058521

    Article  Google Scholar 

  20. Pasti, L., Volterra, A., Pozzan, T., Carmignoto, G.: Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997)

    Google Scholar 

  21. Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., Smith, S.J.: Glutamate induces calcium waves in cultured astrocytes: long-range glial signalling. Science 247, 470–473 (1990). doi:10.1126/science.1967852

    Article  ADS  Google Scholar 

  22. Volterra, A., Meldolesi, J.: Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005). doi:10.1038/nrn1722

    Article  Google Scholar 

  23. Halassa, M.M., Fellin, T., Haydon, P.G.: The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol. Med. 13, 54–63 (2007). doi:10.1016/j.molmed.2006.12.005

    Article  Google Scholar 

  24. Parpura, V., Fang, Y., Basarsky, T., Jahn, R., Haydon, P.G.: Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett. 377, 489–492 (1995). doi:10.1016/0014-5793(95)01401-2

    Article  Google Scholar 

  25. Parpura, V., Liu, F., Brethorst, S., Jeftinija, K., Jeftinija, S., Haydon, P.G.: Alpha-latrotoxin stimulates glutamate release from cortical astrocytes in cell culture. FEBS Lett. 360, 266–270 (1995). doi:10.1016/0014-5793(95)00121-O

    Article  Google Scholar 

  26. Jeftinija, S.D., Jeftinija, K.V., Stefanovic, G.: Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res. 750, 41–47 (1997). doi:10.1016/S0006-8993(96)00610-5

    Google Scholar 

  27. Calegari, F., Coco, S., Taverna, E., Bassetti, M., Verderio, C., Corradi, N., Matteoli, M., Rosa, P.: A regulated secretory pathway in cultured hippocampal astrocytes. J. Biol. Chem. 274, 22539–22547 (1999). doi:10.1074/jbc.274.32.22539

    Article  Google Scholar 

  28. Zhang, Q., Pangrsic, T., Kreft, M., Krzan, M., Li, N., Sul, J.-Y., Halassa, M., Van Bockstaele, E., Zorec, R., Haydon, P.G.: Fusion related release of glutamate from astrocytes. J. Biol. Chem. 279, 12724–12733 (2004). doi:10.1074/jbc.M312845200

    Article  Google Scholar 

  29. Chen, X., Wang, L., Zhou, Y., Zheng, L.H., Zhou, Z.: “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J. Neurosci. 25, 9236–9243 (2005). doi:10.1523/JNEUROSCI.1640-05.2005

    Article  Google Scholar 

  30. Parri, H.R., Gould, T.M., Crunelli, V.: Spontaneous astrocytic Ca2 + oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–812 (2001). doi:10.1038/90507

    Article  Google Scholar 

  31. Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P.G., Carmignoto, G.: Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43, 729–743 (2004). doi:10.1016/j.neuron.2004.08.011

    Article  Google Scholar 

  32. Angulo, M.C., Kozlov, A.S., Charpak, S., Audinat, E.: Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J. Neurosci. 24, 6920–6927 (2004). doi:10.1523/JNEUROSCI.0473-04.2004

    Article  Google Scholar 

  33. Fellin, T., Pozzan, T., Carmignoto, G.: Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J. Biol. Chem. 281, 4274–4284 (2006). doi:10.1074/jbc.M510679200

    Article  Google Scholar 

  34. Newman, E.A.: New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26, 536–542 (2003). doi:10.1016/S0166-2236(03)00237-6

    Article  Google Scholar 

  35. Newman, E.A.: Glial cell inhibition of neurons by release of ATP. J. Neurosci. 23, 1659–1666 (2003)

    Google Scholar 

  36. Di Garbo, A., Barbi, M., Chillemi, S., Alloisio, S., Nobile, M.: Calcium signalling in astrocytes and modulation of neural activity. Biosystems 89, 74–83 (2007). doi:10.1016/j.biosystems.2006.05.013

    Article  Google Scholar 

  37. Höfer, T., Venance, L., Giaume, C.: Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J. Neurosci. 22, 4850–4859 (2002)

    Google Scholar 

  38. Putney, J.W., Broad, L.M., Jr., Braun, F., Lievremont, J., Bird, G.J.: Mechanisms of capacitative calcium entry. J. Cell Sci. 114, 2223–2229 (2001)

    Google Scholar 

  39. Targos, B., Barańska, J., Pomorski, P.: Store-operated calcium entry in physiology and pathology of mammalian cells. Acta Biochim. Pol. 52, 397–409 (2005)

    Google Scholar 

  40. Randriamampita, C., Tsien, R.Y.: Emptying of intracellular Ca2 +  stores releases a novel small messenger that stimulates Ca2 +  influx. Nature 364, 809–814 (1993). doi:10.1038/364809a0

    Article  ADS  Google Scholar 

  41. Berridge, M.J.: Capacitative calcium entry. Biochem. J. 312, 1–11 (1995)

    Google Scholar 

  42. Volterra, A., Steinhauser, C.: Glial modulation of synaptic transmission in the hippocampus. Glia 47, 249–257 (2004). doi:10.1002/glia.20080

    Article  Google Scholar 

  43. North, R.A., Barnard, E.A.: Nucleotide receptors. Curr. Opin. Neurobiol. 7, 346–357 (1997). doi:10.1016/S0959-4388(97)80062-1

    Article  Google Scholar 

  44. Khakh, B.S., Gittermann, D., Cockayne, D.A., Jones, A.: ATP modulation of excitatory synapses onto interneurons. J. Neurosci. 23, 7426–7437 (2003)

    Google Scholar 

  45. Bowser, D.N., Khakh, B.S.: ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J. Neurosci. 24, 8606–8620 (2004). doi:10.1523/JNEUROSCI.2660-04.2004

    Article  Google Scholar 

  46. Kawamura, M., Gachet, C., Inoue, K., Kato, F.: Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y receptors in the hippocampal slice. J. Neurosci. 24, 10835–10845 (2004). doi:10.1523/JNEUROSCI.3028-04.2004

    Article  Google Scholar 

  47. Fries, P., Nikolik, D., Singer, W.: The gamma cycle. Trends Neurosci. 30, 309–316 (2007). doi:10.1016/j.tins.2007.05.005

    Article  Google Scholar 

  48. Freund, T.F.: Interneuron diversity series: rhythm and mood perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003). doi:10.1016/S0166-2236(03)00227-3

    Article  Google Scholar 

  49. Hestrin, S., Galarreta, M.: Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 28, 304–309 (2005). doi:10.1016/j.tins.2005.04.001

    Article  Google Scholar 

  50. Mann, E.O., Paulsen, O.: Role of GABAergic inhibition in hippocampal network oscillations. Trends Cogn. Sci. 30, 343–349 (2007)

    Google Scholar 

  51. Nadkarni, S., Jung, P.: Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91, 268101(4) (2003)

    Article  ADS  Google Scholar 

  52. Nadkarni, S., Jung, P.: Dressed neurons: modelling neural–glia interactions. Phys. Biol. 1, 35–41 (2004). doi:10.1088/1478-3967/1/1/004

    Article  ADS  Google Scholar 

  53. Olufsen, M., Whittington, M., Camperi, M., Kopell, N.: New roles for the gamma rhythm: population tuning and preprocessing for the beta rhythm. J. Comput. Neurosci. 14, 33–54 (2003). doi:10.1023/A:1021124317706

    Article  Google Scholar 

  54. Sneyd, J., Tsaneva-Atanasova, K., Yule, D.I., Thompson, J.L., Shuttleworth, T.J.: Control of calcium oscillations by membrane fluxes. Proc. Natl. Acad. Sci. U. S. A. 101, 1392–1396 (2004). doi:10.1073/pnas.0303472101

    Article  ADS  Google Scholar 

  55. Lavrentovich, M., Hemkin, S.: A mathematical model of spontaneous calcium (II) oscillations in astrocytes. J. Theor. Biol. 251, 553–560 (2008). doi:10.1016/j.jtbi.2007.12.011

    Article  Google Scholar 

  56. Parri, H.R., Crunelli, V.: The role of Ca2 +  in the generation of spontaneous astrocytic Ca2 +  oscillations. Neuroscience 120, 979–992 (2003). doi:10.1016/S0306-4522(03)00379-8

    Article  Google Scholar 

  57. Aguado, F., Espinosa-Parrilla, J.F., Carmona, M.A., Soriano, E.: Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J. Neurosci. 22, 9430–9444 (2002)

    Google Scholar 

  58. Tashiro, A., Goldberg, J., Yuste, R.: Calcium oscillations in neocortical astrocytes under epileptiform conditions. J. Neurobiol. 50, 45–55 (2002). doi:10.1002/neu.10019

    Article  Google Scholar 

  59. Nett, W., Oloff, S.H., McCarthy, K.D.: Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol. 87, 528–537 (2002)

    Google Scholar 

  60. Egan, T.M., Samways, D.S.K., Li, Z.: Biophysics of P2X receptors. Pflugers Arch. Eur. J. Physiol. 452, 501–512 (2006)

    Article  Google Scholar 

  61. Li, X.Y., Rinzel, J.: Equations of IP3 receptor-mediated Ca2 +  oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol. 166, 461–473 (1994). doi:10.1006/jtbi.1994.1041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Di Garbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Garbo, A. Dynamics of a minimal neural model consisting of an astrocyte, a neuron, and an interneuron. J Biol Phys 35, 361–382 (2009). https://doi.org/10.1007/s10867-009-9143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9143-2

Keywords

Navigation