Skip to main content

Advertisement

Log in

An analysis of the transitions between down and up states of the cortical slow oscillation under urethane anaesthesia

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

We study the dynamics of the transition between the low- and high-firing states of the cortical slow oscillation by using intracellular recordings of the membrane potential from cortical neurons of rats. We investigate the evidence for a bistability in assemblies of cortical neurons playing a major role in the maintenance of this oscillation. We show that the trajectory of a typical transition takes an approximately exponential form, equivalent to the response of a resistor–capacitor circuit to a step-change in input. The time constant for the transition is negatively correlated with the membrane potential of the low-firing state, and values are broadly equivalent to neural time constants measured elsewhere. Overall, the results do not strongly support the hypothesis of a bistability in cortical neurons; rather, they suggest the cortical manifestation of the oscillation is a result of a step-change in input to the cortical neurons. Since there is evidence from previous work that a phase transition exists, we speculate that the step-change may be a result of a bistability within other brain areas, such as the thalamus, or a bistability among only a small subset of cortical neurons, or as a result of more complicated brain dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Steriade, M., Núnez, A., Amzica, F.: A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993)

    Google Scholar 

  2. Marshall, L., Helgadóttir, H., Mölle, M., Born, J.: Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006)

    Article  ADS  Google Scholar 

  3. Tononi, G., Cirelli, C.: Sleep function and synaptic homeostatis. Sleep Med. Rev. 10, 49–62 (2006)

    Article  Google Scholar 

  4. Destexhe, A.: Self-sustained asynchronous irregular states and up-down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J. Comput. Neurosci. (2009). doi:10.1007/s10827-009-0164-4

    MathSciNet  Google Scholar 

  5. Compte, A., Sanchez-Vives, M.V., McCormick, D.A., Wang, X.J.: Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725 (2003)

    Article  Google Scholar 

  6. Hill, S., Tononi, G.: Modeling sleep and wakefulness in the thalamocortical system. J. Neurophysiol. 93, 1671–1698 (2005)

    Article  Google Scholar 

  7. Steriade, M., Núnez, A., Amzica, F.: Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci. 13, 3266–3283 (1993)

    Google Scholar 

  8. Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T.J., Steriade, M.: Origin of slow cortical oscillations in deafferated cortical slabs. Cerebral Cortex 10, 1185–1199 (2000)

    Article  Google Scholar 

  9. Blethyn, K.L., Hughes, S.W., Tóth, T.I., Cope, D.W., Crunelli, V.: Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J. Neurosci. 26, 2474–2486 (2006)

    Article  Google Scholar 

  10. Fuentealba, P., Timofeev, I., Bazhenov, M., Sejnowski, T., Steriade, M.: Membrane bistability in thalamic reticular neurons during spindle oscillations. J. Neurophysiol. 93, 294–304 (2005)

    Article  Google Scholar 

  11. Wilson, M.T., Steyn-Ross, D.A., Sleigh, J.W., Steyn-Ross, M.L., Wilcocks, L.C., Gillies, I.P.: The k-complex and slow oscillation in terms of a mean-field cortical model. J. Comput. Neurosci. 21, 243–257 (2006)

    Article  MathSciNet  Google Scholar 

  12. Massimini, M., Huber, R., Ferrarelli, F., Hill, S., Tononi, G.: The sleep slow oscillation as a traveling wave. J. Neurosci. 24, 6862–6870 (2004)

    Article  Google Scholar 

  13. Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J.: Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22, 8691–8704 (2002)

    Google Scholar 

  14. Sanchez-Vives, M.V., McCormick, D.A.: Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000)

    Article  Google Scholar 

  15. Amzica, F., Steriade, M.: The functional significance of the k-complexes. Sleep Med. Rev. 6, 139–149 (2002)

    Article  Google Scholar 

  16. Molaee-Ardekani, B., Senhadji, L., Shamsollahi, M.B., Vosoughi-Vahdat, B., Wodey, E.: Brain activity modeling in general anesthesia: enhancing local mean-field models using a slow adaptive firing rate. Phys. Rev. E 76, 041911 (2007)

    Article  ADS  Google Scholar 

  17. Robinson, P.A., Wu, H., Kim, J.W.: Neural rate equations for bursting dynamics derived from conductance-based equations. J. Theor. Biol. 250, 663–672 (2008)

    Article  Google Scholar 

  18. Wilson, M.T., Barry, M., Reynolds, J.N.J., Hutchison, E.J.W., Steyn-Ross, D.: Characteristics of temporal fluctuations in the hyperpolarized state of the cortical slow oscillation. Phys. Rev. E 77, 061908 (2008)

    Article  ADS  Google Scholar 

  19. Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T., Gillies, I.P., Wright, J.J.: The sleep cycle modelled as a cortical phase transition. J. Biophys. 31, 547–569 (2005)

    Google Scholar 

  20. Steyn-Ross, D.A., Steyn-Ross, M.L., Wilson, M.T., Sleigh, J.W.: White-noise susceptibility and critical slowing in neurons near spiking threshold. Phys. Rev. E 74, 051920 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  21. Cossart, R., Aronov, D., Yuste, R.: Attractor dynamics of network up states in the neocortex. Nature 423, 283–288 (2003)

    Article  ADS  Google Scholar 

  22. Wilson, M.T., Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W.: Predictions and simulations of cortical dynamics during natural sleep using a continuum approach. Phys. Rev. E 72, 051,910 1–14 (2005)

    Article  MathSciNet  Google Scholar 

  23. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview, Cambridge (2000)

    Google Scholar 

  24. Chagnac-Amitai, Y., Luhmann, H.J., Prince, D.A.: Burst generating and regular spiking layer 5 pyramidal neurons of rat neocortex have different morphology features. J. Comp. Neurol. 296, 598–613 (1990)

    Article  Google Scholar 

  25. Steriade, M.: Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101, 243–276 (2000)

    Article  Google Scholar 

  26. Brecht, M., Krauss, A., Muhammed, S., Sinai-Esfahani, L., Bellanca, S., Margrie, T.W.: Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J. Comp. Neurol. 479, 360–373 (2004)

    Article  Google Scholar 

  27. Games, K.D., Winer, J.A.: Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hear. Res. 34, 1–25 (1988)

    Article  Google Scholar 

  28. Reynolds, J.N.J., Hyland, B.I., Wickens, J.R.: Modulation of an afterhyperpolarization by the substantia nigra induces pauses in the tonic firing of striatal cholinergic interneurons. J. Neurosci. 24, 9870–9877 (2004)

    Article  Google Scholar 

  29. Kerr, J.N.D., Greenberg, D., Helmchen, F.: Imaging input and output of neocortical networks in vivo. Proc. Natl. Acad. Sci. 102(39), 14063–14068 (2005)

    Article  ADS  Google Scholar 

  30. Bojak, I., Liley, D.T.J.: Modeling the effects of anaesthesia on the electroencephalogram. Phys. Rev. E 71, 41,902 (2005)

    Article  ADS  Google Scholar 

  31. Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W.: Modeling brain activation patterns for the default and cognitive states. NeuroImage 45, 289–311 (2009)

    Article  Google Scholar 

  32. Hutt, A., Frank, T.D.: Critical fluctuations and 1/f  α-activity of neural fields involving transmission delays. Acta Phys. Pol., A 108, 1021–1040 (2005)

    ADS  Google Scholar 

  33. Destexhe, A., Paré, D.: Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999)

    Google Scholar 

  34. Destexhe, A., Rudolph, M., Paré, D.: The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4, 739–751 (2003)

    Article  Google Scholar 

  35. Clement, E.A., Richard, A., Thwaites, M., Ailon, J., Peters, S., Dickson, C.T.: Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia. PLoS ONE 3, e2004 (2008)

  36. Sceniak, M.P., MacIver, M.B.: Cellular actions of urethance on rat visual cortical neurons in vitro. J. Neurophysiol. 95, 3865–3874 (2006)

    Article  Google Scholar 

  37. Steriade, M., Timofeev, I., Grenier, F.: Natural waking and sleep states: A view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Peter Robinson of the University of Sydney for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus T. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, M.T., Barry, M., Reynolds, J.N.J. et al. An analysis of the transitions between down and up states of the cortical slow oscillation under urethane anaesthesia. J Biol Phys 36, 245–259 (2010). https://doi.org/10.1007/s10867-009-9180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9180-x

Keywords

Navigation