Skip to main content
Log in

Global stability and persistence in LG–Holling type II diseased predator ecosystems

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A Leslie–Gower–Holling type II model is modified to introduce a contagious disease in the predator population, assuming that disease cannot propagate to the prey. All the system’s equilibria are determined and the behaviour of the system near them is investigated. The main mathematical issues are global stability and bifurcations for some of the equilibria, together with sufficient conditions for persistence of the ecosystem. Counterintuitive results on the role played by intraspecific competition are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Malchow, H., Petrovskii, S., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology, CRC, Boca Raton (2008)

    MATH  Google Scholar 

  2. Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Freedman, H.I.: A model of predator–prey dynamics modified by the action of a parasite. Math. Biosci. 99, 143–155 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beltrami, E., Carroll, T.O.: Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32, 857–863 (1994)

    Article  MATH  Google Scholar 

  5. Venturino, E.: The influence of diseases on Lotka-Volterra systems. Rocky Mt. J. Math. 24, 381–402 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Venturino, E.: Epidemics in predator–prey models: disease among the prey. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (eds.) Mathematical Population Dynamics: Analysis of Heterogeneity. Theory of Epidemics, vol. 1, , pp. 381–393. Wuertz, Winnipeg (1995)

    Google Scholar 

  7. Venturino, E.: Epidemics in predator–prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)

    Article  MATH  Google Scholar 

  8. Venturino, E.: The effects of diseases on competing species. Math. Biosci. 174, 111–131 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Arino, O., Abdllaoui, A.E., Mikram, J., Chattopadhyay, J.: Infection in prey population may act as biological control in ratio-dependent predator–prey models. Nonlinearity 17, 1101–1116 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Chattopadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Haque, M., Venturino, E.: Increase of the prey may decrease the healthy predator population in presence of a disease in the predator. HERMIS 7, 39–60 (2006)

    Google Scholar 

  12. Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Popul. Biol. 70, 273–288 (2006)

    Article  MATH  Google Scholar 

  13. Haque, M., Venturino, E.: An ecoepidemiological model with disease in the predator; the ratio-dependent case. Math. Methods Appl. Sci. 30, 1791–1809 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Aziz-Alaoui, M.A.: Study of a Leslie–Gower–type tritrophic population. Chaos Solitons Fractals 14(8), 1275–1293 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Letellier, C., Aziz-Alaoui, M.A.: Analysis of the dynamics of a realistic ecological model. Chaos Solitons Fractals 13(1), 95–107 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Letellier, C., Aguirre, L., Maquet, J., Aziz-Alaoui, M.A.: Should all the species of a food chain be counted to investigate the global dynamics? Chaos Solitons Fractals 13(5), 1099–1113 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Upadhyay, R.K., Rai, V.: Why chaos is rarely observed in natural populations. Chaos Solitons Fractals 8(12), 1933–1939 (1997)

    Article  ADS  Google Scholar 

  18. Korobeinikov, A.: A Lyapunov function for Leslie–Gower prey–predator models. Appl. Math. Lett. 14(6), 697–699 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gard, T.C., Hallam, T.G.: Persistence in food web-1, Lotka–Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)

    MATH  MathSciNet  Google Scholar 

  20. Liu, R., Duvvuri, V.R.S.K., Wu, J.: Spread pattern formation of H5N1-avian influenza and its implications for control strategies. Math. Model. Nat. Phenom. 3(7), 161–179 (2008)

    Article  MathSciNet  Google Scholar 

  21. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Venturino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarwardi, S., Haque, M. & Venturino, E. Global stability and persistence in LG–Holling type II diseased predator ecosystems. J Biol Phys 37, 91–106 (2011). https://doi.org/10.1007/s10867-010-9201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-010-9201-9

Keywords

Navigation