Skip to main content

Advertisement

Log in

Perspectives on Biological Research for CO2 Ocean Sequestration

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Feasibility studies recently suggest that sequestration of anthropogenic CO2 in the deep ocean could help reduce the atmospheric CO2 concentration. However, implementation of this strategy could have a significant environmental impact on marine organisms. This has highlighted the urgent need of further studies concerning the biological impact of CO2 ocean sequestration. In this paper we summarize the recent literature reporting on the biological impact of CO2 and discuss the research work required for the future. Although fundamental research of the effect of CO2 on marine organisms before the practical consideration of CO2 ocean sequestration was limited, laboratory and field studies concerning biological impacts have been increasing after the first international workshop in 1991 discussing CO2 ocean sequestration. Acute impacts of CO2 ocean sequestration could be determined by laboratory and field experiments and assessed by simulation models as described by the following papers in this section. On the other hand, chronic effects of CO2 ocean sequestration, those directly related to the marine ecosystem, would be difficult to verify by means of experiments and to assess using ecosystem models. One of the practical solutions for this issue implies field experiments starting with controlled small scale and eventually to a large scale of CO2 injection intended to determine ecosystem alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, E. E., J. A. Caulfield, H. J. Herzog and D. I. Auerbach (1997): Impacts of reduced pH from ocean CO 2 disposal: Sensitivity of zooplankton mortality to model parameters. Waste Manage., 17, 375–380.

    Article  Google Scholar 

  • Adams, E., M. Akai, G. Alendal, L. Golmen, P. Haugan, H. Herzog, S. Masutani, S. Murai, G. Nihous, T. Ohsumi, Y. Shirayama, C. Smith, E. Vetter and C. S. Wong (2002): In-ternational field experiment on ocean carbon sequestration. Environ. Sci. Technol., 36, 399A.

    Article  Google Scholar 

  • Angel, M. V. (1996): The biology of continental slopes. p. 113–120. In Ocean Storage of Carbon Dioxide. Workshop 2-- Environmental Impact, ed. by B. Ormerod and M. Angel, IEA Greenhouse Gas R & D Programme, Cheltenham.

  • Angel, M. V. (1997): Environmentally focused experiments: pelagic studies. p. 59–70. In Ocean Storage of Carbon Di-oxide. Workshop 4--Practical and Experimental Ap-proaches, ed. by B. Ormerod, IEA Greenhouse Gas R&D Programme, Cheltenham.

  • Auerbach, D. I., J. A. Caulfield, E. E. Adams and H. J. Herzog (1997): Impacts of ocean CO 2 disposal on marine life: I. A toxicological assessment integrating constant-concentration laboratory assay data with variable-concentration field ex-posure. Environ. Model. Assess., 2, 333–343.

    Article  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F. Thingstad (1983): The ecological role of water-col-umn microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257–263.

    Article  Google Scholar 

  • Berenbrink, M. and C. R. Bridges (1994): Active Na +-, Cl –-and HCO 3–-dependent acid extrusion in Atlantic cod red blood cells in winter activated by hypercapnia. J. Exp. Biol., 192, 239–252.

    Google Scholar 

  • Brewer, P. G. (1997): Ocean chemistry of the fossil fuel CO 2 signal: the haline signature of “Business as Usual”. Geophys. Res. Lett., 24, 1367–1369.

    Article  Google Scholar 

  • Brownell, C. L. (1980): Water quality requirements for first-feeding in marine fish larvae. II. pH, oxygen, and carbon dioxide. J. Exp. Mar. Biol. Ecol., 44, 285–298.

    Article  Google Scholar 

  • Caldeira, K. and M. E. Wickett (2003): Anthropogenic carbon and ocean pH. Nature, 425, 365.

    Article  Google Scholar 

  • Caulfield, J. A., D. I. Auerbach, E. E. Adams and H. J. Herzog (1997a): Near field impacts of reduced pH from ocean CO 2 disposal. Energy Convers. Manage., 38, S343–S348.

    Article  Google Scholar 

  • Caulfield, J. A., E. E. Adams, D. I. Auerbach and H. J. Herzog (1997b): Impacts of ocean CO 2 disposal on marine life: II. Probabilistic plume exposure model used with a time-varying dose-response analysis. Environ. Model. Assess., 2, 345–353.

    Article  Google Scholar 

  • Claiborne, J. B. and D. H. Evans (1992): Acid-base balance and ion transfers in the spiny dogfish (Squalus acanthias) during hypercapnia: A role for ammonia excretion. J. Exp. Zool., 261, 9–17.

    Article  Google Scholar 

  • Crocker, C. E. and J. J. Cech, Jr. (1998): Effects of hypercap-nia on blood-gas and acid-base status in the white sturgeon, Acipenser transmontanus. J. Comp. Physiol. B., 168, 50–60.

    Article  Google Scholar 

  • De Figueiredo, M. A., D. M. Reiner and H. J. Herzog (2003): Ocean carbon sequestration: A case study in public and in-stitutional perceptions. p. 799–804. In Greenhouse Gas Control Technologies, Vol. I, ed. by J. Gale and Y. Kaya, Elsevier Science, Amsterdam.

    Chapter  Google Scholar 

  • Fivelstad, S., H. Haavik, G. Løvik and A. B. Olsen (1998): Sublethal effects and safe levels of carbon dioxide in seawater for Atlantic salmon postsmolts (Salmo salar L.): ion regulation and growth. Aquaculture, 160, 305–316.

    Article  Google Scholar 

  • Fivelstad, S., A. B. Olsen, T. Åsgård, G. Baeverfjord, T. Rasmussen, T. Vindheim and S. Stefansson (2003): Long-term sublethal effects of carbon dioxide on Atlantic salmon smolts (Salmo salar L.): ion regulation, haematology, element composition, nephrocalcinosis and growth parameters. Aquaculture, 215, 301–319.

    Article  Google Scholar 

  • Foss, A., B. A. Røsnes and V. Øiestad (2003): Graded environmental hypercapnia in juvenile spotted wolffish (Anarhichasminor Olafsen): effects on growth, food conversion efficiency and nephrocalcinosis. Aquaculture, 220, 607–617.

    Article  Google Scholar 

  • Frankignoulle, M., C. Canon and J.-P. Gattuso (1994): Marine calcification as a source of carbon dioxide: Positive feed-back of increasing atmospheric CO2. Limnol. Oceanogr., 39, 458–462.

    Article  Google Scholar 

  • Gao, K., Y. Aruga, K. Asada, T. Ishihara, T. Akano and M. Kiyohara (1993): Calcification in the articulated coralline alga iCorallina pilulifera, with special reference to the effect of elevated CO 2 concentration. Mar. Biol., 117, 129–132.

    Article  Google Scholar 

  • Graham, M. S., J. D. Turner and C. M. Wood (1990): Control of ventilation in the hypercapnic skate Raja ocellata: I. Blood and extradural fluid. Respir. Physiol., 80, 259–277.

    Article  Google Scholar 

  • Grøttum, J. A. and T. Sigholt (1996): Acute toxicity of carbon dioxide on European seabass (Dicentrachus labrax): Mortality and effects on plasma ions. Comp. Biochem. hysiol., 115, 323–327.

    Article  Google Scholar 

  • Haedrich, R. L. (1996): Perspective on deep-sea fishes. p. 121–131. In Ocean Storage of Carbon Dioxide. Workshop 2--Environmental Impact, ed. by B. Ormerod and M. Angel, IEA Greenhouse Gas R&D Programme, Cheltenham.

  • Handa, N. and T. Ohsumi (1995): Direct Ocean Disposal of Carbon Dioxide. TERRAPUB, Tokyo, 274 pp.

  • Hayashi, M., J. Kita and A. Ishimatsu (2004): Acid-base responses to lethal aquatic hypercapnia in three marine fish. Mar. Biol., 144, 153–160.

    Article  Google Scholar 

  • Heisler, N. (1993): Acid-base regulation. p. 343–378. In The Physiology of Fishes, ed. by D. H. Evans, CRC Press, Boca Raton.

  • Heisler, N., D. P. Toews and G. F. Holeton (1988): Regulation of ventilation and acid-base status in the elasmobranch Scyliorhinus stellaris during hyperoxia-induced hypercap-nia.Respir. Physiol.vn71, 227–246.

    Article  Google Scholar 

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Liden, X. Dai, K. Maskell and C. A. Johnson (2001): ClimateChange 2001: The Scientific Basis. Cambridge Univ. Press, Cambridge, 881 p

    Google Scholar 

  • Huesemann, M. H., A. D. Skillman and E. A. Crecelius (2002): The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar. Pollut. Bull., 44, 142–148.

    Article  Google Scholar 

  • Jannasch, H. W. (1995): The microbial turnover of carbon in the deep-sea environment. p. 1–11. In Direct Ocean Disposal of Carbon Dioxide, ed. by N. Handa and T. Ohsumi, TERRAPUB, Tokyo.

  • Kent, B. and E. C. Peirce, II (1978): Cardiovascular responses to changes in blood gases in dogfish shark, Squalusacanthias. Comp. Biochem. Physiol., 60C, 37–44.

    Article  Google Scholar 

  • Kikkawa, T., A. Ishimatsu and J. Kita (2003): Acute CO 2 tolerance during the early developmental stages of four marine teleosts. Environ. Toxicol., 18, 375–382.

    Article  Google Scholar 

  • Kikkawa, T., J. Kita and A. Ishimatsu (2004): Comparison of the lethal effect of CO2 and acidification on red sea bream i(Pagrus major) during the early developmental stages. Mar. Pollut. Bull., 48, 108–110.

    Article  Google Scholar 

  • Kleypas, J. A., R. W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon and B. N. Opdyke (1999): Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284, 118–120.

    Article  Google Scholar 

  • Langdon, C., T. Takahashi, C. Sweeney, D. Chipman and J. Goddard (2000): Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glo-balBiogeochem. Cycles, 14, 639–654.

    Article  Google Scholar 

  • Langenbuch, M. and H. O. Pörtner (2002): Changes in metabolic rate and N excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid-base variables. J. Exp.Biol., 205, 1153–1160.

    Google Scholar 

  • Larsen, B. K., H.-O. Pörtner and F. B. Jensen (1997): Extra-and intracellular acid-base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Mar. Biol., 128, 337–346.

    Article  Google Scholar 

  • Leclercq, N., J.-P. Gattuso and J. Jaubert (2000): CO 2 partial pressure controls the calcification rate of a coral community. Global Change Biol., 6, 329–334.

    Article  Google Scholar 

  • Lee, K.-S., J. Kita and A. Ishimatsu (2003): Effects of lethal levels of environmental hypercapnia on cardiovascular and blood-gas status in yellow tail, Seriola quinqueradiata. Zool.Sci., 20, 417–422.

    Article  Google Scholar 

  • Marchetti, C. (1977): On engineering the CO 2 problem. ClimateChange, 1, 59–68.

    Google Scholar 

  • McCarthy, J. J., O. F. Canziani, N. A. Leary, D. J. Dokken and K. S. White (2001): Climate Change 2001: Impacts, Adap-tation,and Vulnerability. Cambridge Univ. Press, Cam-bridge, 1032 pp.

    Google Scholar 

  • Omori, M., C. P. Norman, M. Maeda, B. Kimura and M. Takahashi (1996): Some considerations on the environmental impact of oceanic disposal of CO 2 with special reference to midwater organisms. p. 83–98. In Ocean Storage of Carbon Dioxide. Workshop 2--Environmental Impact, ed. by B. Ormerod and M. Angel, IEA Greenhouse Gas R&D Programme, Cheltenham.

  • Omori, M., C. P. Norman and T. Ikeda (1998): Oceanic disposal of CO 2: Potential effects on deep-sea plankton and micronekton--A review. Plankton Biol. Ecol., 45, 87–99.

    Google Scholar 

  • Ormerod, B. (1996a): Ocean Storage of Carbon Dioxide. Workshop1--Ocean Circulation. IEA Greenhouse Gas R&D Programme, Cheltenham, 113 pp.

  • Ormerod, B. (1996b): Ocean Storage of Carbon Dioxide. Workshop 3--International Links and Concerns. IEA Greenhouse Gas R&D Programme, Cheltenham, 138 pp.

  • Ormerod, B. (1997): Ocean Storage of Carbon Dioxide. Workshop 4--Practical and Experimental Approaches. IEA Greenhouse Gas R&D Programme, Cheltenham, 123 pp.

  • Ormerod, B. and M. Angel (1996): Ocean Storage of CarbonDioxide. Workshop 2--Environmental Impact. IEA Green-house Gas R&D Programme, Cheltenham, 131

  • Perry, S. F. and K. M. Gilmour (1996): Consequences of cat-echolamine release on ventilation and blood oxygen transport during hypoxia and hypercapnia in an elasmobranch (Squalus acanthias) and a teleost (Oncorhynchus mykiss). J. Exp. Biol., 199, 2105–2118.

    Google Scholar 

  • Perry, S. F. and K. M. Gilmour (2002): Sensing and transfer of respiratory gases at the fish gill. J. Exp. Zool., 293, 249–263.

    Article  Google Scholar 

  • Pfannkuche, O. (1996): The deep sea benthic boundary layer: dynamic aspects. p. 99–111. In Ocean Storage of Carbon Dioxide. Workshop 2--Environmental Impact, ed. by B. Ormerod and M. Angel, IEA Greenhouse Gas R&D Pro-gramme, Cheltenham.

  • Pörtner, H. O. and A. Reipschläger (1996): Ocean disposal of anthropogenic CO 2: physiological effects on tolerant and intolerant animals. p. 57–81. In Ocean Storage of CarbonDioxide. Workshop 2--Environmental Impact, ed. by B. Ormerod and M. Angel, IEA Greenhouse Gas R&D Programme, Cheltenham.

  • Pörtner, H. O., A. Reipschläger and N. Heisler (1998): Acid-base regulation, metabolism and energetics in Sipunculus nudus as a function of ambient carbon dioxide level. J. Exp.Biol., 201, 43–55.

    Google Scholar 

  • Rand, G. M. (1995): Fundamentals of Aquatic Toxicology: Effects,Environmental Fate, and Risk Assessment, Second Edition. Taylor & Francis, Philadelphia, Pennsylvania, 1125 pp.

  • Randall, D. J., N. Heisler and F. Drees (1976): Ventilatory response to hypercapnia in the larger spotted dogfish Scyliorhinus stellaris. Am. J. Physiol., 230, 590–594.

    Google Scholar 

  • Riebesell, U., D. A. Wolf-Gladrow and V. Smetacek (1993): Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 361, 249–251.

    Article  Google Scholar 

  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe and F. M. M. Morel (2000): Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364–367.

    Article  Google Scholar 

  • Sanders, N. K., S. Morris, J. J. Childress and B. R. McMahon (1992): Effects of ammonia, trimethylamine, L-lactate and CO 2 on some decapod crustacean haemocyanins. Comp.Biochem. Physiol., 101A, 511–516.

    Article  Google Scholar 

  • Seibel, B. A. and P. J. Walsh (2001): Potential impacts of CO 2 injection on deep-sea biota. Science, 294, 319–320.

    Article  Google Scholar 

  • Seibel, B. A. and P. J. Walsh (2003): Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J. Exp. Biol., 206, 641–650.

    Article  Google Scholar 

  • Shirayama, Y. (1995): Current status of deep-sea biology in relation to the CO 2 disposal. p. 253–264. In Direct Ocean Disposal of Carbon Dioxide, ed. by N. Handa and T. Ohsumi, TERRAPUB, Tokyo.

  • Shirayama, Y. (1997a): Biodiversity and biological impact of ocean disposal of carbon dioxide. Waste Manage., 17, 381–384.

    Article  Google Scholar 

  • Shirayama, Y. (1997b): Proposal of experimental design to assess the biological impacts caused by the CO 2 storage in the deep-sea. p. 71–76. In Ocean Storage of Carbon Diox-ide. Workshop 4--Practical and Experimental Approaches, ed. by B. Ormerod, IEA Greenhouse Gas R&D Programme, Cheltenham.

  • Stenevik, E. K. and J. Giske (1997): Biological Impact of CO 2 –disposal in Norwegian Waters: Preliminary Review. Institute for Fiskei-og Marinbiologi Report 2, Dept. of Fisheries and Marine Biology, University of Bergen, 29 pp.

  • Takeuchi, K., Y. Fujioka, Y. Kawasaki and Y. Shirayama (1997): Impacts of high concentration of CO 2 on marine organisms; a modification of CO 2 ocean sequestration. Energy Convers. Manage., 38, S337–S341.

    Article  Google Scholar 

  • Tamburri, M. N., E. T. Peltzer, G. E. Friederich, I. Aya, K. Yamane and P. G. Brewer (2000): A field study of the ef-fects of CO 2 ocean disposal on mobile deep-sea animals. Mar. Chem., 72, 95–101.

    Article  Google Scholar 

  • Thiel, H. (2003): Anthropogenic impacts on the deep sea. p. 427–470. In Ecosystems of the World 28, Ecosystems of theDeep Oceans, ed. by P. A. Tyler, Elsevier, Amsterdam.

    Google Scholar 

  • Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips and S. E. Williams (2004): Extinction risk from climate change. Nature, 427, 145–148.

    Article  Google Scholar 

  • Toews, D. P., G. F. Holeton and N. Heisler (1983): Regulation of the acid-base status during environmental hypercapnia in the marine teleost fish Conger conger. J. Exp. Biol., 107, 9–20.

    Google Scholar 

  • U.S. Department of Energy, National Energy Technology Laboratory and Monterey Bay Aquarium Research Institute (1999): Direct Ocean Sequestration Experts’ Workshop, Final Report, 59 pp.

  • Vinogradov, M. E. (1997): Some problems of vertical distribution of meso-and macroplankton in the ocean. p. 1–92. In Advances in Marine Biology, the Biogeography of the Oceans, Vol. 32, ed. by J. H. S. Blaxter, A. J. Southward, A. V. Gebruck, E. C. Southward and P. A. Tyler, Academic Press, New York.

    Google Scholar 

  • Wickins, J. F. (1984): The effect of hypercapnic sea water on growth and mineralization in penaeid prawns. Aquaculture, 41, 37–48.

    Article  Google Scholar 

  • Wilhelm, S. W. and C. A. Suttle (1999): Viruses and nutrient cycles in the sea. Bioscience, 49, 781–788.

    Article  Google Scholar 

  • Yamada, Y. and T. Ikeda (1999): Acute toxicity of lowered pH to some oceanic zooplankton. Plankton Biol. Ecol., 46, 62–67.

    Google Scholar 

  • Yamaguchi, A., Y. Watanabe, H. Ishida, T. Harimoto, K. Furusawa, S. Suzuki, J. Ishizaka, T. Ikeda and M. M. Takahashi (2002a): Community and trophic structures of pelagic copepods down to greater depths in the western subarctic Pacific (WEST-COSMIC). Deep-Sea Res. I, 49, 1007–1025.

    Article  Google Scholar 

  • Yamaguchi, A., Y. Watanabe, H. Ishida, T. Harimoto, K. Furusawa, S. Suzuki, J. Ishizaka, T. Ikeda and M. M. Takahashi (2002b): Structure and size distribution of plankton communities down to the greater depths in the western North Pacific Ocean. Deep-Sea Res. II, 49, 5513–5529.

    Article  Google Scholar 

  • Zondervan, I., R. E. Zeebe, B. Rost and U. Riebesell (2001): Decreaseing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. Global Biogeochem. Cy-cles, 15, 507–516.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kita, J., Ohsumi, T. Perspectives on Biological Research for CO2 Ocean Sequestration. Journal of Oceanography 60, 695–703 (2004). https://doi.org/10.1007/s10872-004-5762-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-004-5762-1

Navigation