Skip to main content

Advertisement

Log in

Mechanical Properties of WS2 Nanotubes

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Their mesoscopic dimensions (including a nanometer scale diameter and a micrometer scale length) make nanotubes a unique and attractive object of study, including the study of their mechanical properties and fracture in particular. The investigation of the mechanical properties of individual WS2 nanotubes is a challenging task due to their small size. Hence, various microscopy based techniques were used to overcome this challenge. The Young’s modulus was studied by techniques like atomic force microscope (AFM) and scanning electron microscope (SEM); it was also calculated by using the density-functional-based tight-binding (DFTB) method. Tensile tests and bending tests of individual WS2 nanotubes were performed as well. Furthermore, the shock wave resistance of these nanotubes was tested. The Young’s modulus of WS2 nanotubes was found to be in the range of 150–170 GPa, which is in good agreement with DFTB calculations. WS2 nanotubes also showed tensile strength as high as 16 GPa and fracture strain of 14%. These results indicate the high quality of these nanotubes which reach their theoretical strength. The interlayer shear (sliding) modulus was found to be ca. 2 GPa, this value is in good agreement with DFTB calculations. Moreover, the nanotubes were able to withstand shock waves as high as 21 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Tenne R., Margulis L., Genut M., Hodes G. (1992) Nature 360, 444

    Article  CAS  Google Scholar 

  2. Margulis L., Salitra G., Tenne R., Talianker M. (1993) Nature 365, 113

    Article  CAS  Google Scholar 

  3. Chopra N. G., Luyken R. J., Cherrey K., Crespi V. H., Cohen M. L., Louie S. G., Zettl A. (1995) Science 269, 966

    Article  CAS  Google Scholar 

  4. Spahr M. E., Bitterli P., Nesper R., Muller M., Krumeich F., Nissen H. U. (1998) Angew. Chem. Int. Ed. 37, 1263

    Article  CAS  Google Scholar 

  5. Hacohen Y. R., Grunbaum E., Tenne R., Sloan J., Hutchison J. L. (1998) Nature 395, 336

    Article  CAS  Google Scholar 

  6. Rao C. N. R., Govindaraj A., Deepak F. L., Gunari N. A., Nath M. (2001) Appl. Phys. Lett. 78, 1853

    Article  CAS  Google Scholar 

  7. Goldberger J., He R. R., Zhang Y. F., Lee S. W., Yan H. Q., Choi H. J., Yang P. D. (2003) Nature 422, 599

    Article  CAS  Google Scholar 

  8. C. N. R. Rao and M. Nath (2003). Dalton Trans. 1

  9. Remskar M. (2004) Adv. Mater. 16, 1497

    Article  CAS  Google Scholar 

  10. Tenne R. (2003) Angew. Chem. Int. Ed. 42, 5124

    Article  CAS  Google Scholar 

  11. Bezryadin A., Verschueren A. R. M., Tans S. J., Dekker C. (1998) Phys. Rev. Lett. 80, 4036

    Article  CAS  Google Scholar 

  12. Cao J., Wang Q., Dai H. J. (2003) Phys. Rev. Lett. 90, 157601

    Article  CAS  Google Scholar 

  13. Paulson S., Falvo M. R., Snider N., Helser A., Hudson T., Seeger A., Taylor R. M., Superfine R., Washburn S. (1999) Appl. Phys. Lett. 75, 2936

    Article  CAS  Google Scholar 

  14. Tombler T. W., Zhou C. W., Alexseyev L., Kong J., Dai H. J., Lei L., Jayanthi C. S., Tang M. J., Wu S. Y. (2000) Nature 405, 769

    Article  CAS  Google Scholar 

  15. Barber A. H., Cohen S. R., Wagner H. D. (2003) Appl. Phys. Lett. 82, 4140

    Article  CAS  Google Scholar 

  16. Demczyk B. G., Wang Y. M., Cumings J., Hetman M., Han W., Zettl A., Ritchie R. O. (2002) Mater. Sci. Eng. A Struct. Mater. Properties Microstruct. Process. 334, 173

    Google Scholar 

  17. Lourie O., Cox D. M., Wagner H. D. (1998) Phys. Rev. Lett. 81, 1638

    Article  CAS  Google Scholar 

  18. Williams P. A., Papadakis S. J., Patel A. M., Falvo M. R., Washburn S., Superfine R. (2002) Phys. Rev. Lett. 89, 255502

    Article  CAS  Google Scholar 

  19. Yu M. F., Files B. S., Arepalli S., Ruoff R. S. (2000) Phys. Rev. Lett. 84, 5552

    Article  CAS  Google Scholar 

  20. Yu M. F., Lourie O., Dyer M. J., Moloni K., Kelly T. F., Ruoff R. S. (2000) Science 287, 637

    Article  CAS  Google Scholar 

  21. Dai H. J., Hafner J. H., Rinzler A. G., Colbert D. T., Smalley R. E. (1996) Nature 384, 147

    Article  CAS  Google Scholar 

  22. Nishijima H., Akita S., Nakayama Y. (1999) Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 38, 7247

    CAS  Google Scholar 

  23. Rosentsveig R., Margolin A., Feldman Y., Popovitz-Biro R., Tenne R. (2002) Chem. Mater. 14, 471

    Article  CAS  Google Scholar 

  24. Remskar M., Skraba Z., Regula M., Ballif C., Sanjines R., Levy F. (1998) Adv. Mater. 10, 246

    Article  CAS  Google Scholar 

  25. Rosentsveig R., Margolin A., Feldman Y., Popovitz-Biro R., Tenne R. (2002) Appl. Phys. A Mater. Sci. Process. 74, 367

    Article  CAS  Google Scholar 

  26. Seifert G., Kohler T., Tenne R. (2002) J. Phys. Chem. B 106, 2497

    Article  CAS  Google Scholar 

  27. Kaplan-Ashiri I., Cohen S. R., Gartsman K., Rosentsveig R., Seifert G., Tenne R. (2004) J. Mater. Res. 19, 454

    Article  CAS  Google Scholar 

  28. Kaplan-Ashiri I., Cohen S. R., Gartsman K., Ivanovskaya V., Heine T., Seifert G., Wiesel I., Wagner H. D., Tenne R. (2006) Proc. Natl. Acad. Sci. USA 103, 523

    Article  CAS  Google Scholar 

  29. Timoshenko S. (1961) Theory of Elastic Stability, McGraw-Hill, New York

    Google Scholar 

  30. Ashby M. F. (1989) Acta Metallurgica 37, 1273

    Article  CAS  Google Scholar 

  31. Callister W. D. (2000) Materials Science and Engineering: An Introduction, Wiley, New York

    Google Scholar 

  32. Wu B., Heidelberg A., Boland J. J. (2005) Nature Mater. 4, 525

    Article  CAS  Google Scholar 

  33. Yakobson B. I., Avouris P. (2001) Carbon Nanotubes 80, 287

    Article  CAS  Google Scholar 

  34. Pugno N. M., Ruoff R. S. (2004) Philos. Mag. 84, 2829

    Article  CAS  Google Scholar 

  35. I. Kaplan-Ashiri, S. R. Cohen, N. Apter, Y. Wang, G. Seifert, H. D. Wagner, and R. Tenne (2007). J. Phys. Chem. C, 111, 8432

    Article  CAS  Google Scholar 

  36. Walters D. A., Ericson L. M., Casavant M. J., Liu J., Colbert D. T., Smith K. A., Smalley R. E. (1999) Appl. Phys. Lett. 74, 3803

    Article  CAS  Google Scholar 

  37. Timoshenko S. (1955) Strength of Materials, Van Nostrand, New York

    Google Scholar 

  38. Fischer S., Roman I., Harel H., Marom G., Wagner H. D. (1981) J. Test. Eval. 9, 303

    Article  Google Scholar 

  39. Wagner H. D., Fischer S., Roman I., Marom G. (1981) Composites 12, 257

    Article  CAS  Google Scholar 

  40. Wagner H. D., Marom G., Roman I. (1982) Fibre Sci. Technol. 16, 61

    Article  Google Scholar 

  41. Salvetat J. P., Briggs G. A. D., Bonard J. M., Bacsa R. R., Kulik A. J., Stockli T., Burnham N. A., Forro L. (1999) Phys. Rev. Lett. 82, 944

    Article  CAS  Google Scholar 

  42. Vinson J. R., NetLibrary Inc. (1999) The Behavior of Sandwich Structures of Isotropic and Composite Materials, Technomic Pub. Co., Lancaster, Pa

    Google Scholar 

  43. Joly-Pottuz L., Martin J. M., Dassenoy F., Belin M., Montagnac G., Reynard B., Fleischer N. (2006) J. Appl. Phys. 99, 023524

    Article  CAS  Google Scholar 

  44. Zhu Y. Q., Sekine T., Brigatti K. S., Firth S., Tenne R., Rosentsveig R., Kroto H. W., Walton D. R. M. (2003) J. Am. Chem. Soc. 125, 1329

    Article  CAS  Google Scholar 

  45. Zhu Y. Q., Sekine T., Li Y. H., Fay M. W., Zhao Y. M., Poa C. H. P., Wang W. X., Roe M. J., Brown P. D., Fleischer N., Tenne R. (2005) J. Am. Chem. Soc. 127, 16263

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshef Tenne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan-Ashiri, I., Tenne, R. Mechanical Properties of WS2 Nanotubes. J Clust Sci 18, 549–563 (2007). https://doi.org/10.1007/s10876-007-0118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-007-0118-9

Keywords

Navigation