Skip to main content
Log in

A Cyclic and Polymeric Phosphazene as Solid State Template for the Formation of RuO2 Nanoparticles

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Pyrolysis of the organometallic polymer: {{[N=P(R1)]0.8[N=P(OC6H4CH2CN[Ru])2]0.15[N=P((OC6H5)(OC6H4CH2CN[Ru]]0.05}{Cl}0.31} n , [Ru]=CpRu(PPh3)2, R1 = O2C12H8 (1) as well of the cyclic specie {N3P3 (OC6H5)5(OC6H4CH2CN[Ru])}{PF6} (2) under a flow of air at 800°C affords nanostructured RuO2. Nanoparticles near to 10 nm were observed. The differences in the use of cyclic or polymeric phosphazenes, as solid state template, influence strongly the morphology and slightly the composition of the pyrolytic product. Temperature variable (SQUID) measurements in the range of 5–300 K of the material obtained from the polymer, indicate an antiferromagnetic interaction between the Ru atoms, although lower than that found for the crystalline ruthenium oxide, probably due to some amorphous product present in the pyrolytic material. The possible formation mechanism is discussed and the differences in using the cyclic or the polymeric compound as precursor is analyzed in terms of the relative content of Ru to P, N. A general formation method of nanostructured metal oxides is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. S. Edelstein and R. C. Cammarata (eds.), Nanomaterials: Synthesis Properties and Applications (J.W. Arrowsmith Ltda, Bristol, 2000)

  2. K. J. Klabunde Nanoscale Materials in Chemistry (Wiley-Intertscience, New York, 2001)

  3. Bell A. T. (2003) Science 299:1688

    Article  CAS  Google Scholar 

  4. Petersen R., Foucher D. A., Tang B. Z., Lough A., Raju N. P., Greedan J. E., Manners I. (1995) Chem.Mater. 7:2045

    Article  CAS  Google Scholar 

  5. Shimizu T., Teranishi T., Hasegawa S., Miyake M. (2003) J. Phys. Chem. 107:2719

    CAS  Google Scholar 

  6. Teranishi T., Hasegawa S., Shimizu T., Miyake M. (2001) Adv. Mater. 13:1699

    Article  CAS  Google Scholar 

  7. Maye M. M., Zheng W., Leibowitz L. F., Ly N., Zhong Ch. J. (2000) Langmuir 16:490

    Article  CAS  Google Scholar 

  8. Leite E. R., Carreño N. L. V., Lango E., Pontes F. M., Barison A., Ferreiro A. G., Manitte Y., Varela J. A. (2002) Chem. Mater. 14:3722

    Article  CAS  Google Scholar 

  9. Boxall D. L., Kenik E. A., Lukehart C. M. (2002) Chem. Mater. 14:1715

    Article  CAS  Google Scholar 

  10. Over H., Kim Y., Seitsonen A. P., Wendt S., Lundgren E., Schmid M., Vargas P., Morgante A., Ertl G. (2000) Science 87:1474

    Article  Google Scholar 

  11. Trasatti G., Lodi G. (1980) Electrode of Conductive Metallic Oxides, Part A. Elsevier, Amsterdam, pp. 301–358

    Google Scholar 

  12. Ogwura K. (1936) Appl. Electrochem. 16:732

    Article  Google Scholar 

  13. Zheng J. P., Cygan P., Yow R. T. (1995) J. Electrochem. Soc. 142:2699

    Article  CAS  Google Scholar 

  14. Mckeown D. A., Hagans P. L., Carette L. P., Russell E. A., Swider K. E., Rolison D. R. (1993) J. Phys. Chem. B 103:4825

    Article  Google Scholar 

  15. Arikawa T., Takasu Y., Murakami Y., Asakura K., Iwasawa Y. (1998) J. Phys. Chem. 102:3736

    CAS  Google Scholar 

  16. Colomer M. T., Jurado J. R. (2000) Chem. Mater. 12:923

    Article  CAS  Google Scholar 

  17. Kristof J., Dadio S., De Battyisti A., Piccirillo C., Mihaly J., Hovath E. (1999) Langmuir 151:498

    Google Scholar 

  18. Lembo A., Fuso F., Asimondo E., Ciofi C., Pennelli G., Curro G. M., Neri F., Allegrini M. J. (1997) J. Mater. Res. 12:1433

    Google Scholar 

  19. Ji L., Lin J., Zeng H. C. (2001) Chem. Mater. 13:2403

    Article  CAS  Google Scholar 

  20. Battaglin G., Rigato V., Zandolin S., Benedelti A., Ferraro S., Nami S., De Battisti A. (2004) Chem. Mater. 16:946

    Article  CAS  Google Scholar 

  21. Vogel W., Le Rhun V., Garnier E., Alonso-Vante W. (2001) J. Phys. Chem. B 105:5238

    Article  CAS  Google Scholar 

  22. Lai Y., Chen Y., Chi Y., Liu Ch., Carty A. J., Peng S., Lee G. J. (2003) J. Mater. Chem. 13:1999 references therein

    Article  CAS  Google Scholar 

  23. Dmowski W., Egani T., Swider-Lyons K. E., Love C. T., Rolison D. R. (2002) J. Phys. Chem. B 103:12677

    Article  Google Scholar 

  24. Machida K., Furuuchi K., Min M., Naoi K. (2004) Electrochemistry 72:402

    CAS  Google Scholar 

  25. Wei-Chun Ch., Chi-Chang H., Chen-Ching W., Chun-Kuo M. (2004) J. Power Sources 125:292

    Article  Google Scholar 

  26. C. Díaz and M. L. Valenzuela, in R. Hogg (ed.) Horizons in Polymer Development. (Nova Science Publishers, 2006), Chap. 1

  27. Díaz C., Castillo P. (2002) J. Inorg. Organomet. Polym. 11:183

    Article  Google Scholar 

  28. Díaz C., Castillo P., Carriedo G. A., Gómez-Elipe P., García Alonso F. J. (2002) Macromol. Phys. Chem. 203:1918

    Article  Google Scholar 

  29. Carriedo G. A., García Alonso F. J., Gómez-Elipe P., Díaz C., Yutronic N. (2003) J. Chilean Chem. Soc. 48:25

    CAS  Google Scholar 

  30. Díaz C., Castillo P. (2003) Polym. Bull. 50:123

    Article  Google Scholar 

  31. Díaz C., Valenzuela M. L., Barbosa M. (2004) Mater. Res. Bull. 39:9

    Article  Google Scholar 

  32. Carriedo G. A., García Alonso F. J., García Álvarez J. L., Díaz C., Yutronic N. (2000) Polyhedron 21:2587

    Article  Google Scholar 

  33. Olshavsky M. A., Allcock H. R. (1997) Chem. Mater. 91:367

    Google Scholar 

  34. Walker C. H., St. John J., Wisian-Neilson P. (2001) J. Am. Chem. Soc. 123:3846

    Article  CAS  Google Scholar 

  35. Jung J., Kmecko T., Claypool Ch. L., Zhang H., Wisian-Neilson P. (2005) Macromolecules 38:2122

    Article  CAS  Google Scholar 

  36. M. Gleria and R. De Jaeger (eds.), Applicative Aspects of Cyclophospahezenes (Nova, New York, 2004)

  37. Allcock H. R., Desorcie J. L., Riding G. H. (1987) Polyhedron 6:119

    Article  CAS  Google Scholar 

  38. Chandrasekhar V., Justin Thomas K. R. (1993) Chem. Appl. Organomet. Chem. 7:1

    Article  CAS  Google Scholar 

  39. Díaz C., Barbosa M., Godoy Z. (2004) Polyhedron 23:1027

    Article  Google Scholar 

  40. Chandrasekhar V., Nagendran S. (2001) Chem. Soc. Rev. 3:193

    Article  Google Scholar 

  41. Heston A. I., Panzner M. I., Yuongs W. I., Tessier C. A. (2005) Inorg. Chem. 44:6518

    Article  CAS  Google Scholar 

  42. Kandemirli F. (2003) Phosph. Sulfur. Silicon 178:2331

    Article  CAS  Google Scholar 

  43. Díaz C., Valenzuela M. L. (2006) Macromolecules 39:103

    Article  Google Scholar 

  44. Díaz C., Castillo P., Valenzuela M. L. (2005) J. Clust. Sci. 16:515

    Article  Google Scholar 

  45. M. Valle, L. López-Ruiz, J. M. Badia, and P. Adeva, Microscopia Electrónica de Barrido y Microanálisis por Rayos X (Rueda Madrid, 1996), Chap. 23

  46. Cotton F. A., Mague J. T. (1966) Inorg. Chem. 5:317

    Article  CAS  Google Scholar 

  47. Tang J., Redl F., Zhu Y., Siegrist T., Brus L. E., Steigerwald M. L. (2005) Nano Lett. 5:543

    Article  CAS  Google Scholar 

  48. Tang J., Fabbri J., Robinson R. D., Zhu Y., Herman I. P., Steigerwald M. L., Brus L. E. (2004) Chem. Mater. 16:1336

    Article  CAS  Google Scholar 

  49. Joo J., Yu T., Kim Y. W., Park H. M., Wu F., Zhang J. Z., Hyeon T. J. (2005) J. Am. Chem. Soc. 125:6553

    Article  Google Scholar 

  50. Trentler T. J., Denler T. E., Bertone J. F., Agrawal A., Colvin V. L. (1999) J. Am. Chem. Soc. 121:1613

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by FONDECYT (projects 1030515 and 1040461) and FONDAP (project 11980002) is gratefully acknowledged. We also thank to the referee for the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, C., Valenzuela, M.L., Spodine, E. et al. A Cyclic and Polymeric Phosphazene as Solid State Template for the Formation of RuO2 Nanoparticles. J Clust Sci 18, 831–844 (2007). https://doi.org/10.1007/s10876-007-0132-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-007-0132-y

Keywords

Navigation