Skip to main content
Log in

Size Control of FePt Nanoparticles Produced by Seed Mediated Growth Process

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Monodisperse FePt nanoparticles with average size of 2.4 nm were successfully synthesized via chemical co-reduction of iron acetylacetonate, Fe(acac)3, and platinum acetylacetonate, Pt(acac)2, by 1,2-hexadecanediol as a reducing agent and oleic acid and oleyl amine as surfactant. Then using the seed mediated growth process smaller sized FePt nanoparticles are used as seeds for the growth of larger sized FePt particles and there is no specific limitation to achieve upper size range by this method. In this work, we could synthesize FePt nanoparticles up to 4.0 nm. Monodispersity with relatively narrow size distribution and having the same elemental composition with the atomic percentage of Fe x Pt100−x (x = 63) are the main advantages of this method. As-made FePt nanoparticles have the chemical disordered face centered cubic structure with superparamagnetic behavior at room temperature. After annealing these particles become ferromagnetic with high magnetocrystalline anisotropy and their coercivity increases with increasing particle sizes and reaches a maximum value of 5,200 Oe for size of 46.5 nm

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J. U. Thiele, and M. F. Doerner (2000). IEEE Trans. Magn. 36, 10.

    Article  CAS  Google Scholar 

  2. B. D. Cullity and C. D. Graham Introduction to Magnetic Materials, 2nd ed (John Wiley, New Jersey, 2009).

    Google Scholar 

  3. S. Sun, E. Fullerton, D. Weller, and C. B. Murray (2001). IEEE Trans. Magn. 37, 1239.

    Article  CAS  Google Scholar 

  4. V. S. Maceira, L. M. Lizmarzan, and M. Farle (2004). Langmuir 20, 6946.

    Article  Google Scholar 

  5. T. S. Vedantam and J. P. Liu (2003). J. Appl. Phys. 93, 7184.

    Article  CAS  Google Scholar 

  6. K. Yano, V. Nandwana, N. Poudyal, C. Rong, and J. Liu (2008). J. Appl. Phys. 104, 013918.

    Article  Google Scholar 

  7. S. Saita and S. Maenosono (2005). Chem. Mater. 17, 3705.

    Article  CAS  Google Scholar 

  8. S. Kang, S. Shi, G. X. Miao, Z. Jia, D. E. Nikles, and J. W. Harrell (2007). J. Nanosci. Nanotechnol. 7, 350.

    CAS  Google Scholar 

  9. H. G. Bagaria, E. T. Ada, M. Shamsuzzoha, D. E. Nikles, and D. T. Johnson (2006). Langmuir 22, 7732.

    Article  CAS  Google Scholar 

  10. J. M. Vargas and R. D. Zysler (2007). J. Appl. Phys. 101, 023903.

    Article  Google Scholar 

  11. S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray, and B. D. Terris (2003). J. Phys. Chem. B. 107, 5419.

    Article  CAS  Google Scholar 

  12. Y. C. Sui, Y. Zhao, M. Daniil, X. Z. Li, and D. J. Sellmyer (2006). J. Appl. Phys. 99, 08G704.

    Article  Google Scholar 

  13. L. C. Varanda and M. Jafelicci (2006). J. Am. Chem. Soc. 11062, 128.

    Google Scholar 

  14. Y. Sasaki, M. Mizuno, A. C. C. Yu, T. Miyauchi, D. Hasegawa, T. Ogawa, M. Takahashi, B. Jeyadevan, K. Tohji, K. Sato, and S. Hisano (2005). IEEE Trans. Magn. 41, 660.

    Article  CAS  Google Scholar 

  15. C. Liu, X. Wu, T. Klemmer, N. Shukla, X. Yang, D. Weller, A. G. Roy, M. A. Tanase, and D. Laughlin (2004). J. Phys. Chem. B. 108, 6121.

    Article  CAS  Google Scholar 

  16. K. E. Elkins, T. S. Vedantam, J. P. Liu, H. Zeng, S. Sun, Y. Ding, and Z. L. Wang (2003). Nano Lett. 3, 1647.

    Article  CAS  Google Scholar 

  17. N. Poudyal, G. S. Chaubey, C. Rong, and J. P. Liu (2009). J. Appl. Phys. 105, 014303.

    Article  Google Scholar 

  18. K. Simeonidis, S. Mourdikoudis, I. Tsiaoussis, C. D. Samara, M. Angelakeris, and O. Kalogirou (2008). J. Magn. Magn. Mater. 320, 2665.

    Article  CAS  Google Scholar 

  19. S. Saita and S. Maenosono (2005). Chem. Mater. 17, 6624.

    Article  CAS  Google Scholar 

  20. O. Kalogirou, M. Angelakeris, C. D. Samara, S. Mourdikoudis, K. Simeonidis, K. Gloystein, A. V. Clemente, and I. Tsiaoussis (2010). J. Nanosci. Nanotechnol. 10, 6017.

    Article  CAS  Google Scholar 

  21. L. Colak and G. C. Hadjipanayis (2007). J. Appl. Phys. 101, 09J108.

    Google Scholar 

  22. L. Colak and G. C. Hadjipanayis (2009). Nanotechnology 20, 485602.

    Article  Google Scholar 

  23. H. B. Wang, H. Wang, J. Zhang, F. J. Yang, Y. M. Xu, and Q. Li (2010). Nanoscale Res Lett. 5, 489.

    Article  CAS  Google Scholar 

  24. V. Nandwana, K. E. Elkins, N. Poudyal, G. S. Chaubey, K. Yano, and J. Ping Liu (2007). J. Phys. Chem. C. 111, 4185.

    Article  CAS  Google Scholar 

  25. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li (2004). J. Am. Chem. Soc. 126, 273.

    Article  CAS  Google Scholar 

  26. O. Masala and R. Seshadri (2005). Chem. Phys. Lett. 402, 160.

    Article  CAS  Google Scholar 

  27. Q. Song and Z. J. Zhang (2004). J. Am. Chem. Soc. 126, 6164.

    Article  CAS  Google Scholar 

  28. L. Zhang, R. He, and H. C. Gu (2006). Mater. Res. Bull. 41, 260.

    Article  CAS  Google Scholar 

  29. H. Reiss (1951). J. Chem. Phys. 19, 482.

    Article  CAS  Google Scholar 

  30. Y. Yin and A. P. Alivisatos (2005). Nature 437, 664.

    Article  CAS  Google Scholar 

  31. B. E. Warren X-Ray Diffraction (Dover Publications, New York, 1990).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Physics Research Center, Science & Research Branch at Islamic Azad University and the Magnetic & Superconducting Research Lab at Birjand University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Zeynali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeynali, H., Sebt, S.A., Arabi, H. et al. Size Control of FePt Nanoparticles Produced by Seed Mediated Growth Process. J Clust Sci 23, 1107–1117 (2012). https://doi.org/10.1007/s10876-012-0506-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0506-7

Keywords

Navigation