Skip to main content
Log in

Using a Natural Surfactant for Synthesize of NiO and CuO Nanostructures via Simple and Fast Microwave Approach

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

NiO and CuO nanostructures were synthesized successfully via simple and fast microwave approach. Olive oil was chose as surfactant for stabilizing nanostructures. Different parameters such as microwave time and power and olive oil concentration were investigated on product size and morphology. The products were characterized with X-ray diffraction pattern, scanning electron microscopy, transmission electron microscopy and energy dispersive spectrometry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Feldmann and H. O. Jungk (2001). Angewandte Chemie Int. Ed. 40, 359–362.

    Article  CAS  Google Scholar 

  2. N. Dharmaraj, P. Prabu, S. Nagarajan, C. H. Kim, J. H. Park, and H. Y. Kim (2006). Mater. Sci. Eng. B 128, 111–114.

    Article  CAS  Google Scholar 

  3. M. Frietsch, F. Zudock, J. Goschnick, and M. Bruns (2000). Sens. Actuators B 65, 379–381.

    Article  CAS  Google Scholar 

  4. T. Maruyama (1998). Sol. Energy Mater. Sol. Cells 56, 85–92.

    Article  CAS  Google Scholar 

  5. H. A. Mook, P. Dai, F. Doǧan, and R. D. Hunt (2000). Nature 404, 729–731.

    Article  CAS  Google Scholar 

  6. D. Jingfa, S. Qi, Z. Yulong, C. Songying, and W. Dong (1996). Appl. Catal. A 139, 75–85.

    Article  Google Scholar 

  7. J. Y. Xiang, J. P. Tu, J. Zhang, J. Zhong, D. Zhang, and J. P. Cheng (2010). Electrochem. Commun. 12, 1103–1107.

    Article  CAS  Google Scholar 

  8. Y. Chang and H. C. Zeng (2004). Cryst. Growth Des. 4, 273–278.

    Article  CAS  Google Scholar 

  9. G. H. Du and G. Van Tendeloo (2004). Chem. Phys. Lett. 393, 64–69.

    Article  CAS  Google Scholar 

  10. M. Cao, C. Hu, Y. Wang, Y. Guo, C. Guo, and E. Wang (2003). Chem. Commun. 9, 1884–1885.

    Article  Google Scholar 

  11. J. Zhu, G. Zeng, F. Nie, X. Xu, S. Chen, Q. Han, and X. Wang (2010). Nanoscale 2, 988–994.

    Article  CAS  Google Scholar 

  12. Y. Zhang, S. Wang, Y. Qian, and Z. Zhang (2006). Solid State Sci. 8, 462–466.

    Article  CAS  Google Scholar 

  13. B. Liu and H. C. Zeng (2004). J. Am. Chem. Soc. 126, 8124–8125.

    Article  CAS  Google Scholar 

  14. T. Alammar, A. Birkner, and A. V. Mudring (2009). Eur. J. Inorg. Chem. 19, 2765–2768.

    Article  Google Scholar 

  15. X. Jiang, T. Herricks, and Y. Xia (2002). Nano Lett. 2, 1333–1338.

    Article  CAS  Google Scholar 

  16. J. Li, R. Yan, B. Xiao, D. T. Liang, and L. Du (2008). Environ. Sci. Technol. 42, 6224–6229.

    Article  CAS  Google Scholar 

  17. F. Zhang, S. Jin, Y. Mao, Z. Zheng, Y. Chen, and X. Liu (1997). Thin Solid Films 310, 29–33.

    Article  CAS  Google Scholar 

  18. S. G. Kim, S. P. Yoon, J. Han, S. W. Nam, T. H. Lim, I. H. Oh, and S. A. Hong (2004). Electrochimica Acta 49, 3081–3089.

    Article  CAS  Google Scholar 

  19. D. Levin and J. Y. Ying (1997). Stud. Surf. Sci. Catal. 110, 367–373.

    Article  CAS  Google Scholar 

  20. H. X. Yang, Q. F. Dong, X. H. Hu, X. P. Ai, and S. X. Li (1999). J. Power Sources 79, 256–261.

    Article  CAS  Google Scholar 

  21. W. Wu, X. F. Huang, K. J. Chen, J. B. Xu, X. Gao, J. Xu, and W. Li (1999). J. Vac. Sci. Technol. A 17, 159–163.

    Article  CAS  Google Scholar 

  22. Y. Ichiyanagi, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima, E. Komatsu, and H. Tajima (2003). Physica B 329–333, 862–863.

    Article  Google Scholar 

  23. Z. H. Liang and Y. J. Zhu (2004). Chem. Lett. 33, 1314–1315.

    Article  CAS  Google Scholar 

  24. J. Y. Zhang, H. Q. Yang, R. L. Yang, W. Y. Yang, Y. Z. Song, H. Jiao, and L. Li (2007). Chin. Sci. Bull. (in Chinese) 52, 2015–2020.

    Google Scholar 

  25. S. A. Needham, G. X. Wang, and H. K. Liu (2006). J. Power Sources 159, 254–257.

    Article  CAS  Google Scholar 

  26. Y. Qiu, J. Yu, C. Tan, and J. Yin (2009). Mater. Lett. 63, 200–202.

    Article  CAS  Google Scholar 

  27. X. Wang, L. Yu, P. Hu, and F. Yuan (2007). Cryst. Growth Des. 7, 2415–2418.

    Article  CAS  Google Scholar 

  28. X. Li, X. Zhang, Z. Li, and Y. Qian (2006). Solid State Commun. 137, 581–584.

    Article  CAS  Google Scholar 

  29. L. Cattin, B. A. Reguig, A. Khelil, M. Morsli, K. Benchouk, and J. C. Bernède (2008). Appl. Surf. Sci. 254, 5814–5821.

    Article  CAS  Google Scholar 

  30. X. Ni, Q. Zhao, F. Zhou, H. Zheng, J. Cheng, and B. Li (2006). J. Cryst. Growth 289, 299–302.

    Article  CAS  Google Scholar 

  31. W. Zhou, M. Yao, L. Guo, Y. Li, J. Li, and S. Yang (2009). J. Am. Chem. Soc. 131, 2959–2964.

    Article  CAS  Google Scholar 

  32. A. Al-Hajry, A. Umar, M. Vaseem, M. S. Al-Assiri, F. El-Tantawy, M. Bououdina, S. Al-Heniti, and Y. B. Hahn (2008). Superlattices Microstruct. 44, 216–222.

    Article  CAS  Google Scholar 

  33. K. C. Liu and M. A. Anderson (1996). J. Electrochem. Soc. 143, 124–130.

    Article  CAS  Google Scholar 

  34. H. Wang, J. Z. Xu, J. J. Zhu, and H. Y. Chen (2002). J. Cryst. Growth 244, 88–94.

    Article  CAS  Google Scholar 

  35. L. Xiang, X. Y. Deng, and Y. Jin (2002). Scripta Materialia 47, 219–224.

    Article  CAS  Google Scholar 

  36. S. Deki, H. Yanagimoto, S. Hiraoka, K. Akamatsu, and K. Gotoh (2003). Chem. Mater. 15, 4916–4922.

    Article  CAS  Google Scholar 

  37. S. F. Liu, C. Y. Wu, and X. Z. Han (2003). Chin. J. Inorg. Chem. 19, 624–626.

    CAS  Google Scholar 

  38. K. J. Rao, B. Vaidhyanathan, M. Ganguli, and P. A. Ramakrishnan (1999). Chem. Mater. 11, 882–895.

    Article  CAS  Google Scholar 

  39. S. A. Galema (1997). Chem. Soc. Rev. 26, 233–238.

    Article  CAS  Google Scholar 

  40. Y. Wada, H. Kuramoto, T. Sakata, H. Mori, T. Sumida, T. Kitamura, and S. Yanagida (1999). Chem. Lett. 7, 607–608.

    Article  Google Scholar 

  41. D. L. Boxall, G. A. Deluga, E. A. Kenik, W. D. King, and C. M. Lukehart (2001). Chem. Mater. 13, 891–900.

    Article  CAS  Google Scholar 

  42. K. W. Gallis and C. C. Landry (2001). Adv. Mater. 13, 23–26.

    Article  CAS  Google Scholar 

  43. X. Song and L. Gao (2008). J. Am. Ceram. Soc. 91, 3465–3468.

    Article  CAS  Google Scholar 

  44. Y. Zhang, Z. Zhu, W. Zhang, Y. Zhang, H. Liu, G. Chen, and Y. Wang (2012). J. Nano Res. 20, 43–52.

    Article  Google Scholar 

  45. A. K. Mondal, D. Su, Y. Wang, S. Chen, Q. Liu, and G. Wang (2014). J. Alloys Compd. 582, 522–527.

    Article  CAS  Google Scholar 

  46. Z. Zhu, Y. Zhang, Y. Zhang, H. Liu, C. Zhu, and Y. Wu (2013). Ceram. Int. 39, 2567–2573.

    Article  CAS  Google Scholar 

  47. S. Vijayakumar, S. Nagamuthu, and G. Muralidharan (2013). ACS Appl. Mater. Interf. 5, 2188–2196.

    Article  CAS  Google Scholar 

  48. C. Karunakaran and G. Manikandan (2013). Key Eng. Mater. 543, 76–79.

    Article  Google Scholar 

  49. X. F. Cao, L. Zhang, Z. Q. Li, and X. T. Chen (2012). Chin. J. Inorg. Chem. 28, 2373–2378.

    CAS  Google Scholar 

  50. C. Deng, H. Hu, X. Zhang, C. Han, D. Zhao, and G. Shao (2012). Asian J. Chem. 24, 4083–4086.

    Google Scholar 

  51. L. Shi, C. Yang, X. Su, J. Wang, F. Xiao, J. Fan, C. Feng, and H. Sun (2014). Ceram. Int. 40, 5103–5106.

    Article  CAS  Google Scholar 

  52. C. Yang, X. Su, J. Wang, X. Cao, S. Wang, and L. Zhang (2013). Sens. Actuators B 185, 159–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Council of Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadijeh Eskandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mwhmadi, M., Kamali, M., Rashidiani, J. et al. Using a Natural Surfactant for Synthesize of NiO and CuO Nanostructures via Simple and Fast Microwave Approach. J Clust Sci 25, 1577–1587 (2014). https://doi.org/10.1007/s10876-014-0741-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0741-1

Keywords

Navigation