Skip to main content

Advertisement

Log in

Low-Energy Structures of Binary Pt–Sn Clusters from Global Search Using Genetic Algorithm and Density Functional Theory

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The low-energy structures of PtnSnn (n = 1–10) and Pt3mSnm (m = 1–5) clusters have been determined using genetic algorithm incorporated with density functional theory. Platinum and tin atoms tend to mix with each other due to the energetically favorable Pt–Sn bonds. However, due to the larger atomic radius of Sn atoms, we find segregation of Sn atoms on the surface of PtnSnn clusters. This leaves one or two Pt atoms available for reaction and for larger clusters segregation of Sn could block the Pt sites. For Pt3mSnm clusters, Sn atoms are well separated in the cluster structures and prefer to form sharp vertices leaving triangular faces of three Pt atoms available for reactivity. The electronic properties such as highest occupied molecular orbital–lowest unoccupied molecular orbital gap, distribution of frontier orbitals, Mayer bond order, Mülliken atomic charge, and the density of states are discussed. Significant hybridization between the d orbitals of Pt and the p orbitals of Sn is revealed. These theoretical results provide the general trends for the structural and bonding characteristics of the Pt–Sn alloy clusters and help understand their catalytic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Sanfilippo (2000). CATTECH 4, 56.

    Article  CAS  Google Scholar 

  2. N. Alonso-Vante (2010). Chemphyschem 11, 2732.

    Article  CAS  Google Scholar 

  3. U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, V. Radmilovic, N. M. Markovic, and P. N. Ross (2002). J. Phys. Chem. B 106, 4181.

    Article  CAS  Google Scholar 

  4. L. Dubau, J. Durst, F. Maillard, L. Guétaz, M. Chatenet, J. André, and E. Rossinot (2011). Electrochim. Acta 56, 10658.

    Article  CAS  Google Scholar 

  5. S. R. Calvo and P. B. Balbuena (2007). Surf. Sci. 601, 165.

    Article  CAS  Google Scholar 

  6. H. W. Lei, S. Suh, B. Gurau, B. Workie, R. X. Liu, and E. S. Smotkin (2002). Electrochim. Acta 47, 2913.

    Article  CAS  Google Scholar 

  7. L. Dubau, F. Hahn, C. Coutanceau, J. M. Léger, and C. Lamy (2003). J. Electroanal. Chem. 554–555, 407.

    Article  Google Scholar 

  8. H. Wang, Z. Jusys, and R. J. Behm (2006). J. Appl. Electrochem. 36, 1187.

    Article  CAS  Google Scholar 

  9. M. S. Löffler, H. Natter, R. Hempelmann, and K. Wippermann (2003). Electrochim. Acta 48, 3047.

    Article  Google Scholar 

  10. Y. Wang, S. Song, G. Andreadis, H. Liu, and P. Tsiakaras (2011). J. Power Sources 196, 4980.

    Article  CAS  Google Scholar 

  11. W. Qi, G. Q. Sun, L. H. Jiang, M. Y. Zhu, G. X. Wang, X. Qin, S. G. Sun, Q. S. Chen, Y. X. Jiang, and S. P. Chen (2008). Spectrosc. Spectr. Anal. 28, 47.

    Google Scholar 

  12. W. J. Zhou, W. Z. Li, S. Q. Song, Z. H. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, and P. Tsiakaras (2004). J. Power Sources 131, 217.

    Article  CAS  Google Scholar 

  13. C. Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau, and J. M. Léger (2004). Electrochim. Acta 49, 3901.

    Article  CAS  Google Scholar 

  14. F. Colmati, E. Antolini, and E. Gonzalez (2008). J. Solid State Electrochem. 12, 591.

    Article  CAS  Google Scholar 

  15. E. Antolini and E. R. Gonzalez (2011). Catal. Today 160, 28.

    Article  CAS  Google Scholar 

  16. G. Meitzner, G. H. Via, F. W. Lytle, S. C. Fung, and J. H. Sinfelt (1988). J. Phys. Chem. 92, 2925.

    Article  CAS  Google Scholar 

  17. D. H. Lim, D. H. Choi, W. D. Lee, and H. I. Lee (2009). Appl. Catal. B 89, 484.

    Article  CAS  Google Scholar 

  18. D. Rodríguez, J. Sanchez, and G. Arteaga (2005). J. Mol. Catal. A 228, 309.

    Article  Google Scholar 

  19. Z. Paál, A. Wootsch, D. Teschner, K. Lázár, I. E. Sajó, N. Győrffy, G. Weinberg, A. Knop-Gericke, and R. Schlögl (2011). Appl. Catal. A 391, 377.

    Article  Google Scholar 

  20. P. Villars Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, vol. 1 (American Society for Metals, Metals Park, 1986).

    Google Scholar 

  21. C. Jeyabharathi, P. Venkateshkumar, J. Mathiyarasu, and K. L. N. Phani (2008). Electrochim. Acta 54, 448.

    Article  CAS  Google Scholar 

  22. A. C. Boucher, N. Alonso-Vante, F. Dassenoy, and W. Vogel (2003). Langmuir 19, 10885.

    Article  CAS  Google Scholar 

  23. M. Boualleg, D. Baudouin, J.-M. Basset, F. Bayard, J.-P. Candy, J.-C. Jumas, L. Veyre, and C. Thieuleux (2010). Chem. Commun. 46, 4722.

    Article  CAS  Google Scholar 

  24. V. Kumar (1981). Phys. Rev. B 23, 3756.

    Article  CAS  Google Scholar 

  25. V. Kumar and K. H. Bennemann (1984). Phys. Rev. Lett. 53, 278.

    Article  CAS  Google Scholar 

  26. C. Becker, J. Haubrich, K. Wandelt, F. Delbecq, D. Loffreda, and P. Sautet (2008). J. Phys. Chem. C 112, 14693.

    Article  CAS  Google Scholar 

  27. F. Delbecq, D. Loffreda, and P. Sautet (2009). J. Phys. Chem. Lett. 1, 323.

    Article  Google Scholar 

  28. P. Bommersbach, M. Chaker, M. Mohamedi, and D. Guay (2008). J. Phys. Chem. C 112, 14672.

    Article  CAS  Google Scholar 

  29. K. A. Grant, K. M. Keryou, and P. A. Sermon (2008). Faraday Discuss. 138, 257.

    Article  CAS  Google Scholar 

  30. M. Arenz, V. Stamenkovic, B. B. Blizanac, K. J. Mayrhofer, N. M. Markovic, and P. N. Ross (2005). J. Catal. 232, 402.

    Article  CAS  Google Scholar 

  31. Z. R. Ismagilov, E. V. Matus, A. M. Yakutova, L. N. Protasova, I. Z. Ismagilov, M. A. Kerzhentsev, E. V. Rebrov, and J. C. Schouten (2009). Catal. Today 147, (Supplement), S81.

    Article  CAS  Google Scholar 

  32. A. Borgna, S. M. Stagg, and D. E. Resasco (1998). J. Phys. Chem. B 102, 5077.

    Article  CAS  Google Scholar 

  33. H. Bönnemann, P. Britz, and W. Vogel (1998). Langmuir 14, 6654.

    Article  Google Scholar 

  34. Y. Yao, Q. Fu, Z. Zhang, H. Zhang, T. Ma, D. Tan, and X. Bao (2008). Appl. Surf. Sci. 254, 3808.

    Article  CAS  Google Scholar 

  35. L. L. Wang and D. D. Johnson (2007). Phys. Rev. B 75, 235405.

    Article  Google Scholar 

  36. D. Majumdar, D. Dai, and K. Balasubramanian (2000). J. Chem. Phys. 113, 7919.

    Article  CAS  Google Scholar 

  37. D. Majumdar, D. Dai, and K. Balasubramanian (2000). J. Chem. Phys. 113, 7928.

    Article  CAS  Google Scholar 

  38. E. Aprà and A. Fortunelli (2003). J. Phys. Chem. A 107, 2934.

    Article  Google Scholar 

  39. M. N. Huda, M. K. Niranjan, B. R. Sahu, and L. Kleinman (2006). Phys. Rev. A 73, 053201.

    Article  Google Scholar 

  40. T. Jacob, R. P. Muller, and W. A. Goddard (2003). J. Phys. Chem. B 107, 9465.

    Article  CAS  Google Scholar 

  41. L. Chen, A. C. Cooper, G. P. Pez, and H. S. Cheng (2007). J. Phys. Chem. C 111, 5514.

    Article  CAS  Google Scholar 

  42. V. Kumar and Y. Kawazoe (2008). Phys. Rev. B 77, 205418.

    Article  Google Scholar 

  43. K. Bhattacharyya and C. Majumder (2007). Chem. Phys. Lett. 446, 374.

    Article  CAS  Google Scholar 

  44. A. Nie, J. Wu, C. Zhou, S. Yao, C. Luo, R. C. Forrey, and H. Cheng (2007). Int. J. Quantum Chem. 107, 219.

    Article  CAS  Google Scholar 

  45. A. Sebetci and Z. B. Güvenç (2003). Surf. Sci. 525, 66.

    Article  CAS  Google Scholar 

  46. X. Wang and D. Tian (2009). Comput. Mater. Sci. 46, 239.

    Article  CAS  Google Scholar 

  47. C. L. Heredia, V. Ferraresi-Curotto, and M. B. Lopez (2012). Comput. Mater. Sci. 53, 18.

    Article  CAS  Google Scholar 

  48. Z.-Y. Lu, C.-Z. Wang, and K.-M. Ho (2000). Phys. Rev. B 61, 2329.

    Article  CAS  Google Scholar 

  49. B. Assadollahzadeh, S. Schäfer, and P. Schwerdtfeger (2010). J. Comput. Chem. 31, 929.

    CAS  Google Scholar 

  50. C. Jo and K. Lee (2000). J. Chem. Phys. 113, 7268.

    Article  CAS  Google Scholar 

  51. C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe (2001). Phys. Rev. B 64, 233405.

    Article  Google Scholar 

  52. F.-c. Chuang, C. Z. Wang, S. Ög˘üt, J. R. Chelikowsky, and K. M. Ho (2004). Phys. Rev. B 69, 165408.

    Article  Google Scholar 

  53. E. Oger, R. Kelting, P. Weis, A. Lechtken, D. Schooss, N. R. M. Crawford, R. Ahlrichs, and M. M. Kappes (2009). J. Chem. Phys. 130, 124305.

    Article  Google Scholar 

  54. S. Schäfer, B. Assadollahzadeh, M. Mehring, P. Schwerdtfeger, and R. Schäfer (2008). J. Phys. Chem. A 112, 12312.

    Article  Google Scholar 

  55. C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe (2005). Phys. Rev. B 71, 035401.

    Article  Google Scholar 

  56. R. Ferrando, A. Fortunelli, and R. L. Johnston (2008). Phys. Chem. Chem. Phys. 10, 640.

    Article  CAS  Google Scholar 

  57. L. Sai, J. Zhao, X. Huang, and J. Wang (2012). J. Nanosci. Nanotechnol. 12, 132.

    Article  CAS  Google Scholar 

  58. X. Huang, L. Sai, X. Jiang, and J. Zhao (2013). Eur. Phys. J. D 67, 43.

    Article  Google Scholar 

  59. L. Sai, L. Tang, J. Zhao, J. Wang, and V. Kumar (2011). J. Chem. Phys. 135, 184305.

    Article  Google Scholar 

  60. L. Sai, L. Tang, X. Huang, G. Chen, J. Zhao, and J. Wang (2012). Chem. Phys. Lett. 544, 7.

    Article  CAS  Google Scholar 

  61. L. Hong, H. Wang, J. Cheng, X. Huang, L. Sai, and J. Zhao (2012). Comput. Theor. Chem. 993, 36.

    Article  CAS  Google Scholar 

  62. Z. Jijun and X. Rui-Hua (2004). J. Comput. Theor. Nanosci. 1, 117.

    Article  Google Scholar 

  63. J. Ho, M. L. Polak, K. M. Ervin, and W. C. Lineberger (1993). J. Chem. Phys. 99, 8542.

    Article  CAS  Google Scholar 

  64. M. B. Airola and M. D. Morse (2002). J. Chem. Phys. 116, 1313.

    Article  CAS  Google Scholar 

  65. J. Donohue The Structures of the Elements (Wiley, New York, 1974).

    Google Scholar 

  66. J. Ho, M. L. Polak, and W. C. Lineberger (1992). J. Chem. Phys. 96, 144.

    Article  CAS  Google Scholar 

  67. G. Kresse and J. Furthmüller (1996). Phys. Rev. B 54, 11169.

    Article  CAS  Google Scholar 

  68. D. W. Smith Inorganic Substances: A Prelude to the Study of Descriptive Inorganic Chemistry (Cambridge University Press, Cambridge, 1990).

    Book  Google Scholar 

  69. I. Mayer (1986). Int. J. Quantum Chem. 29, 477.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 11134005, 11304030), the Fundamental Research Funds for the Central Universities of China (No. DUT14LK19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jijun Zhao or Vijay Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Su, Y., Sai, L. et al. Low-Energy Structures of Binary Pt–Sn Clusters from Global Search Using Genetic Algorithm and Density Functional Theory. J Clust Sci 26, 389–409 (2015). https://doi.org/10.1007/s10876-014-0829-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0829-7

Keywords

Navigation