Skip to main content
Log in

New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

New Pt(0) nanoparticles were easily and reproducibly prepared by the simultaneous reduction method using 1-butylamine (BA) and tributylamine (TBA) for the first time as capturing ligands at room temperature. X-ray diffraction, X-ray photoelectron microscopy and transmission electron microscopy measurements verify the formation of well-dispersed Pt(0) nanoparticles [~3.63 and ~3.98 nm for catalysts prepared using BA (catalyst I) and TBA (catalyst II), respectively] on an activated carbon surface. The catalytic performances of these nanoparticles in terms of activity, isolability and reusability were investigated for both alcohol oxidation and the dehydrocoupling of dimethylamine-borane (DMAB). These nanoparticles were shown to be as active and reusable heterogeneous catalysts even at room temperature. The prepared catalysts can catalyze the dehydrogenation of DMAB with one of the highest known activities at room temperature and also C1–C3 alcohol oxidation with very high electrochemical activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Ozturk, F. Sen, S. Sen, and G. Gokagac (2012). J. Mater. Sci. 47, 8134–8144.

    Article  CAS  Google Scholar 

  2. M. Gratzel (2003). Nature 414, 338–344.

    Article  Google Scholar 

  3. F. Sen, S. Sen, and G. Gökağaç (2011). Phys. Chem. Chem. Phys. 13, 1676–1684.

    Article  CAS  Google Scholar 

  4. J. Wang, S. Wasmus, and R. F. Savinell (1995). J. Electrochem. Soc. 142, 4218.

    Article  CAS  Google Scholar 

  5. N. Fujiwara, K. A. Friedrich, and U. Stimming (1999). J. Electroanal. Chem. 472, 120–125.

    Article  CAS  Google Scholar 

  6. A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J. M. Leger, and C. Lamy (1998). J. Electroanal. Chem. 444, 41–53.

    Article  CAS  Google Scholar 

  7. W. Vielstich (2003). J. Braz. Chem. Soc. 14, 503–509.

    Article  CAS  Google Scholar 

  8. X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld (2000). J. Power Sources 86, 111.

    Article  CAS  Google Scholar 

  9. S. Wasmus and A. Kuver (1999). J. Electroanal. Chem. 461, 14–31.

    Article  CAS  Google Scholar 

  10. V. Neburchilov, J. Martin, H. J. Wang, and J. J. Zhang (2007). J. Power Sources 169, 221–238.

    Article  CAS  Google Scholar 

  11. B. D. McNicol, D. A. J. Rand, and K. R. Williams (1999). J. Power Sources 83, 15–31.

    Article  CAS  Google Scholar 

  12. F. Sen and G. Gökağaç (2014). J. Appl. Electrochem. 44, 199–207.

    Article  CAS  Google Scholar 

  13. S. Sen, F. Sen, and G. Gökağaç (2011). Phys. Chem. Chem. Phys. 13, 6784–6792.

    Article  CAS  Google Scholar 

  14. J. Datta, S. Sıngh, S. Das, and N. R. Bandyopadhyay (2009). Bull. Mater. Sci. 32, (6), 643.

    Article  CAS  Google Scholar 

  15. W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides, and P. Tsiakaras (2005). J. Power Sources 140, 50.

    Article  CAS  Google Scholar 

  16. S. Sen Gupta and J. Datta (2005). J. Chem. Sci. 117, 337–344.

    Article  CAS  Google Scholar 

  17. J. T. Wang, S. Wasmus, and R. F. Savinell (1995). J. Electrochem. Soc. 142, 4218–4224.

    Article  CAS  Google Scholar 

  18. D. Cao and S. H. Bergens (2003). J. Power Sources 124, 12–17.

    Article  CAS  Google Scholar 

  19. Z. G. Qi and A. Kaufman (2003). J. Power Sources 118, 54–60.

    Article  CAS  Google Scholar 

  20. H. Uchida, Y. Mizuno, and M. Watanabe (2002). J. Electrochem. Soc. 149, A682.

    Article  CAS  Google Scholar 

  21. W. C. Choi, J. D. Kim, and S. I. Woo (2002). Catal. Today 74, 235.

    Article  CAS  Google Scholar 

  22. F. Sen and G. Gökağaç (2007). J. Phys. Chem. C 111, 1467–1473.

    Article  CAS  Google Scholar 

  23. F. Sen and G. Gökağaç (2007). J. Phys. Chem. C 111, 5715–5720.

    Article  CAS  Google Scholar 

  24. H. Pamuk, B. Aday, F. Sen, and M. Kaya (2015). RSC Adv.. doi:10.1039/C5RA06441D.

    Google Scholar 

  25. P. T. A. Sumodjo, E. J. Silva, and T. Rabochai (1989). J. Electroanal. Chem. 271, 305.

    Article  CAS  Google Scholar 

  26. S. Ertan, F. Sen, S. Sen, and G. Gökağaç (2012). J. Nanopart. Res. 14, 922.

    Article  Google Scholar 

  27. F. Sen, G. Gökağaç, and S. Sen (2013). J. Nanopart. Res. 15, 1979.

    Article  Google Scholar 

  28. F. Sen, Y. Karatas, M. Gulcan, and M. Zahmakiran (2014). RSC Adv. 4, 1526.

    Article  CAS  Google Scholar 

  29. Z. Liu, X. Y. Ling, X. Su, and J. Y. Lee (2004). J. Phys. Chem. B 108, 8234–8240.

    Article  CAS  Google Scholar 

  30. H. Klug and L. Alexander X-ray Diffraction Procedures, 1st ed (Wiley, New York, 1954).

    Google Scholar 

  31. T. C. Deivaraj, W. X. Chen, and J. Y. Lee (2003). J. Mater. Chem. 13, 2555.

    Article  CAS  Google Scholar 

  32. T. Yonezawa, N. Toshima, C. Wakai, M. Nakahara, M. Nishinaka, T. Tominaga, and H. Nomura (2000). Coll. Surf. A 169, 35–45.

    Article  CAS  Google Scholar 

  33. J. Zhao, P. Wang, W. Chen, R. Liu, X. Li, and Q. Nie (2006). J. Power Sources 160, 563–569.

    Article  CAS  Google Scholar 

  34. V. S. Bogotzky and Y. B. Vassilyev (1967). Electrochim. Acta 12, 1323.

    Article  Google Scholar 

  35. S. P. Jiang, Z. Liu, H. L. Tang, and M. Pan (2006). Electrochim. Acta 51, 5721–5730.

    Article  CAS  Google Scholar 

  36. Z. B. Wang, G. P. Yin, and P. F. Shi (2005). J. Electrochem. Soc. 152, A2406–A2412.

    Article  CAS  Google Scholar 

  37. Y. T. Kim and T. Mitani (2006). J. Catal. 238, 394–401.

    Article  CAS  Google Scholar 

  38. F. Kadirgan, S. Beyhan, and T. Atilan (2009). Int. J. Hydrog. Energy 34, 4312–4320.

    Article  CAS  Google Scholar 

  39. S. Özkar and R. G. Finke (2002). J. Am. Chem. Soc. 124, 5796.

    Article  Google Scholar 

  40. K. J. Laidler Chemical Kinetics, 3rd ed (Benjamin-Cummings, UK, 1997).

    Google Scholar 

  41. H. Eyring (1935). J. Chem. Phys. 3, 107.

    Article  CAS  Google Scholar 

  42. M. Zahmakiran and S. Ozkar (2009). Inorg. Chem. 48, 8955.

    Article  CAS  Google Scholar 

  43. Y. Sun, L. Zhuang, J. Lu, X. Hong, and P. Liu (2007). J. Am. Chem. Soc. 129, 15465.

    Article  CAS  Google Scholar 

  44. D. Pun, E. Lobkovsky, and P. J. Chirik (2007). Chem. Commun. 44, 3297.

    Article  Google Scholar 

  45. M. Zahmakiran, M. Tristany, K. Philippot, K. Fajerwerg, S. Ozkar, and B. Chaudret (2010). Chem. Commun. 46, 2938.

    Article  CAS  Google Scholar 

  46. C. A. Jaska, K. Temple, A. J. Lough, and I. Manners (2003). J. Am. Chem. Soc. 125, 9424.

    Article  CAS  Google Scholar 

  47. T. J. Clark, C. A. Russell, and I. Manners (2006). J. Am. Chem. Soc. 128, 9582.

    Article  CAS  Google Scholar 

  48. M. Sloan, T. J. Clark, and I. Manners (2009). Inorg. Chem. 48, 2429.

    Article  CAS  Google Scholar 

  49. A. Friendrich, M. Drees, and S. Schneider (2009). Chem. Eur. J. 15, 10339.

    Article  Google Scholar 

  50. R. J. Keaton, J. M. Blacquiere, and R. T. Baker (2007). J. Am. Chem. Soc. 129, 11936.

    Article  Google Scholar 

  51. Y. Kawano, M. Uruichi, M. Shiomi, S. Taki, T. Kawaguchi, T. Kakizawa, and H. Ogino (2009). J. Am. Chem. Soc. 131, 14946.

    Article  CAS  Google Scholar 

  52. A. P. M. Robertson, R. Suter, L. Chabanne, G. R. Whittel, and I. Manners (2011). Inorg. Chem. 50, 12680.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dumlupınar University (DPU-BAP-2014-25) and Usak University (2014/MF019) for the partial financial support. The authors gratefully acknowledge DPU-İLTEM and Duzce Central Laboratory (DUBIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Şen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erken, E., Pamuk, H., Karatepe, Ö. et al. New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB). J Clust Sci 27, 9–23 (2016). https://doi.org/10.1007/s10876-015-0892-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0892-8

Keywords

Navigation