Skip to main content
Log in

Controllable Synthesis of Covellite Nanoparticles via Thermal Decomposition Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, covellite (CuS) nanoparticles were synthesized through a facile and low temperature thermal decomposition method using [Cu(sal)2]- oleylamine complex, (sal = salicylaldehydeato, prepared in situ from [Cu(sal)2] and oleylamine as the precursors), and sulfur as the Cu2+ source and S source, respectively. Scanning electron microscope, transmission electron microscope, electron diffraction and ultraviolet–visible absorption (UV–Vis) spectra were used for the characterization of the products. The effect of reaction parameters, such as the copper:sulfur molar ratio, the reaction temperature and the reaction time on the shape, size and phase of CuS nanostructures, was investigated. The results showed that the, covellite (hexagonal structure of CuS) with an average size between 20 and 45 nm could be obtained with the Cu:S molar ratio of 1: 3 at 105 °C for 60 min. With increasing the reaction temperature from 105 to 200 °C, non-stoichiometric Cu1.65S with the average size of 25–50 nm was obtained due to the different existing state of the released Cu2+ ions from the copper-oleylamine complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Nezamifar, K. Ghani, and N. Kiomarsipour (2015). J. Nanostruct. 5, 203–207.

    Google Scholar 

  2. Y. Wang, L. Zhang, H. Jiu, N. Li, and Y. Sun (2014). Appl. Surf. Sci. 303, 54–60.

    Article  CAS  Google Scholar 

  3. S. L. Prokopenko, G. M. Gunja, S. N. Makhno, and P. P. Gorbyk (2014). J. Nanostruct. Chem. 4, 103–108.

    Article  Google Scholar 

  4. S. Sagadevan, and K. Pandurangan (2015). Int. J. Nano Dimens. 6, 433–438.

    Google Scholar 

  5. X. Wang, C. Xu, and Z. Zhang (2006). Mater. Lett. 60, 345–348.

    Article  CAS  Google Scholar 

  6. Y. Li, J. Scott, Y.-T. Chen, L. Guo, M. Zhao, X. Wang, and W. Lu (2015). Mat. Chem. Phys 162, 671–676.

    Article  CAS  Google Scholar 

  7. Y. Ni, F. Wang, J. Liu, Q. Miu, Z. Xu, and J. Hong (2003). Chin. J. Inorg. Chem. 19, 1184–1197.

    Google Scholar 

  8. C. Nascu, I. Pop, V. Ionescu, E. Indrea, and I. Bratu (1997). Mater. Lett. 32, 73–77.

    Article  CAS  Google Scholar 

  9. M. Hossaini Sadr, and H. Nabipour (2013). J. Nanostruct. Chem. 3, 26–31

    Article  Google Scholar 

  10. F. Li, T. Kong, W. Bi, D. Li, Z. Li, and X. Huang (2009). Appl. Surf. Sci. 255, 6285–6289.

    Article  CAS  Google Scholar 

  11. V. Rajendran and J. Gajendiran (2015). Mat. Sci. Sem. Proc. 36, 92–95.

    Article  CAS  Google Scholar 

  12. Sh Sohrabnezhad, M. A. Zanjanchi, S. Hosseingholizadeh, and R. Rahnama (2014). Spectrochim. Acta Part A 123, 142–150.

    Article  CAS  Google Scholar 

  13. H. Zhu, X. Ji, D. Yang, Y. Ji, and H. Zhang (2005). Microporous Mesoporous Mater. 80, 153–156.

    Article  CAS  Google Scholar 

  14. A. Rahdar (2013). J. Nanostruct. Chem. 3, 61–67.

    Article  Google Scholar 

  15. A. K. Thottoli, and A. K. A. Unni (2013). J. Nanostruct. Chem. 3, 56–62

    Article  Google Scholar 

  16. D. Ghanbari, M. Salavati-Niasari, M. Esmaeili-Zare, P. Jamshidi, and F. Akhtarianfar (2014). J. Ind. Eng. Chem. 20, 3709–3713.

    Article  CAS  Google Scholar 

  17. J. Mohapatra (2013). Int. Nano Lett. 3, 31–38.

    Article  Google Scholar 

  18. T. H. Larsen, M. Sigman, A. Ghezeibash, R. C. Doty, and B. A. Korgel (2003). J. Am. Chem. Soc. 125, 5638–5639.

    Article  CAS  Google Scholar 

  19. S. Baskoutas, P. Giabouranis, S. N. Yannopoulos, V. Dracopoulos, L. Toth, A. Chrissanthopoulos, and N. Bouropoulos (2007). Thin Solid Films 515, 8461–8464.

    Article  CAS  Google Scholar 

  20. M. Salavati-Niasari, Z. Fereshteh, and F. Davar (2009). J. Alloys Compd. 476, 797–801.

    Article  Google Scholar 

  21. A. Ghezelbash and B. A. Korgel (2005). Langmuir 21, 9451.

    Article  CAS  Google Scholar 

  22. P. Zhang and L. Gao (2003). J. Mater. Chem. 13, 2007.

    Article  CAS  Google Scholar 

  23. H. Grijalra, M. Inoue, S. Boggavarapu, and P. Calvert (1996). J. Mater. Chem. 6, 1157–1160.

    Article  Google Scholar 

  24. P. P. Paul, T. B. Rauchfuss, and S. R. Wilson (1993). J. Am. Chem. Soc. 115, 3316–3317.

    Article  CAS  Google Scholar 

  25. J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, and T. Hyeon (2003). J. Am. Chem. Soc. 125, 11100–11105.

    Article  CAS  Google Scholar 

  26. W. Lou, M. Chen, X. Wang, and W. Liu (2007). J. Phys. Chem. C. 111, 9658–9660.

    Article  CAS  Google Scholar 

  27. W. S. Seo, H. H. Jo, K. Lee, B. Kim, S. J. Oh, and J. T. Park (2004). Angew. Chem. Int. Ed. 43, 1115–1117.

    Article  CAS  Google Scholar 

  28. W. S. Seo, H. H. Jo, K. Lee, and J. T. Park (2003). Adv. Mater. 15, 795–797.

    Article  CAS  Google Scholar 

  29. W. P. Lim, C. T. Wong, S. L. Ang, H. Y. Low, and W. S. Chin (2006). Chem. Mater. 18, 6170–6177.

    Article  CAS  Google Scholar 

  30. H. T. Zhang, G. Wu, and X. H. Chen (2006). Mater. Chem. Phys. 98, 298–303.

    Article  CAS  Google Scholar 

  31. M. Salavati-Niasari and F. Davar (2009). Mater. Lett. 63, 441–443.

    Article  CAS  Google Scholar 

  32. H. Klug and L. Alexander X-ray Diffraction Procedures (Wiley, New York, 1962), p. 125.

    Google Scholar 

  33. Y. Liu, D. Qin, L. Wang, and Y. Cao (2007). Mater. Chem. Phys. 102, 201–206.

    Article  CAS  Google Scholar 

  34. S. K. Haram, A. R. Mahadeshwar, and S. G. Dixit (1996). J. Phys. Chem. 100, 5868–5873.

    Article  CAS  Google Scholar 

  35. B. Geng, X. Liu, J. Ma, and Q. Du (2007). Mater. Sci. Eng. B 145, 17–22.

    Article  CAS  Google Scholar 

  36. S. G. Dixit, A. R. Mahadeshwar, and S. K. Haram (1998). Colloids Surf. A 133, 69–75.

    Article  CAS  Google Scholar 

  37. L. Chu, B. Zhou, H. Mua, Y. Sun, and P. Xu (2008). J. Cryst. Growth 310, 5437–5440.

    Article  CAS  Google Scholar 

  38. M. Saranya, R. Ramachandran, E. J. J. Samuel, S. K. Jeong, and A. N. Grace (2015). Powder Technol. 279, 209–220.

    Article  CAS  Google Scholar 

  39. H. Qi, F. Huang, L.-Y. Cao, J.-P. Wu, and D.-Q. Wang (2012). Ceram. Int. 38, 2195–2200.

    Article  CAS  Google Scholar 

  40. Y. Cheng Chen, J. Bin Shi, C. Wu, C. Jung Chen, Y. Ting Lin, and P. Feng Wu (2008). Mater. Lett. 62, 1421–1423.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to council of Isfahan University of Technology for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Davar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davar, F., Loghman-Estarki, M.R., Salavati-Niasari, M. et al. Controllable Synthesis of Covellite Nanoparticles via Thermal Decomposition Method. J Clust Sci 27, 593–602 (2016). https://doi.org/10.1007/s10876-015-0947-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0947-x

Keywords

Navigation