Skip to main content
Log in

Selective and Sensitive Colorimetric Detection of Hg2+ at Wide pH Range Using Green Synthesized Silver Nanoparticles as Probe

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Herein, we report a green preparative strategy for the synthesis of crystalline silver nanoparticles (Ag NPs) using Ficus amplissima leaf extract (FA-LE) in aqueous medium under ambient sunlight irradiation. The prepared FA-LE capped Ag NPs are characterized using absorption spectroscopy, high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy, dynamic light scattering, zeta potential measurements and simultaneous thermogravimetric and differential thermal analysis (TG–DTA). The FA-LE capped Ag NPs have been successfully utilized for selective and sensitive detection of toxic Hg2+ ions by naked eye with a limit of detection of 1.30 × 10−7 mol dm−3. FA-LE capped Ag NPs are tested for detection of Hg2+ in different real water samples with satisfying recoveries over 98–101%. More importantly, green synthesized FA-LE capped Ag NPs based colorimetric sensor detected Hg2+ ions in water at wide pH range (3.2–8.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. J. E. Sanchez-Uria and A. Sanz-Medel (1998). Talanta. 47, 509.

    Article  CAS  Google Scholar 

  2. B. F. Azevedo, L. B. Furieri, F. M. Peçanha, G. A. Wiggers, P. F. Vassallo, M. R. Simões, J. Fiorim, P. R. de Batista, M. Fioresi, L. Rossoni, I. Stefanon, M. J. Alonso, M. Salaices and D. V. J. Vassallo (2012). Biomed. Biotechnol. 949048.

  3. Y. Bhattacharjee and A. Chakraborty (2014). ACS Sustain. Chem. Eng. 2, 2149.

    Article  CAS  Google Scholar 

  4. I. Bertini, H. B. Gray, S. J. Lippard, and J. S. Valentine Bioinorganic Chemistry (University Science Books, Mill Valley, CA, 1994).

    Google Scholar 

  5. T. W. Clarkson (1992). Environ. Health Perspect. 100, 31.

    Article  Google Scholar 

  6. R. A. Bernhoft (2012). J. Environ. Public Health. 2012, 1.

    Article  Google Scholar 

  7. M. G. Minnich, D. C. Miller, and P. J. Parsons (2008). Spectrochim. Acta Part B. 63, 389.

    Article  Google Scholar 

  8. B. B. A. Francisco, A. A. Rocha, P. Grinberg, R. E. Sturgeon, and R. J. Cassella (2016). J. Anal. At. Spectrom. 31, 751.

    Article  CAS  Google Scholar 

  9. P. Cava-Montesinos, E. Ródenas-Torralba, Á. Morales-Rubio, M. L. la de Cervera, and M. Guardia (2004). Anal. Chim. Acta. 506, 145.

    Article  CAS  Google Scholar 

  10. Y. Zhao, H. Liu, F. Chen, M. Bai, J. Zhao, and Y. Zhao (2016). Biosens. Bioelectron. 86, 892.

    Article  CAS  Google Scholar 

  11. Y. Yamini, N. Alizadeh, and M. Shamsipur (1997). Anal. Chim. Acta. 355, 69.

    Article  CAS  Google Scholar 

  12. D. Karunasagar, J. Arunachalam, and S. Gangadharan (1998). J. Anal. At. Spectrom. 13, 679.

    Article  CAS  Google Scholar 

  13. H. J. Kim, D. S. Park, M. H. Hyun, and Y. B. Shim (1998). Electroanalysis. 10, 303.

    Article  CAS  Google Scholar 

  14. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik (2006). Nano Lett. 6, 984.

    Article  CAS  Google Scholar 

  15. G. C. Zhu, Y. Li, and C. Y. Zhang (2014). Chem. Commun. 50, 572.

    Article  CAS  Google Scholar 

  16. Z. Yan, M. F. Yuen, L. Hu, P. Sun, and C. S. Lee (2014). RSC Adv. 4, 48373.

    Article  CAS  Google Scholar 

  17. A. Moores and F. Goettmann (2006). New J. Chem. 30, 1121.

    Article  CAS  Google Scholar 

  18. P. Liu and M. Zhao (2009). Appl. Surf. Sci. 7, 3989.

    Article  Google Scholar 

  19. S. P. Flores, D. A. Wheeler, T. M. Tran, Z. Tanaka, C. Jiang, M. B. Flores, F. Qian, Y. Li, B. Chen, and J. Z. Zhang (2011). Chem. Commun. 47, 4129.

    Article  Google Scholar 

  20. N. Erathodiyil and J. Y. Ying (2011). Acc. Chem. Res. 44, 925.

    Article  CAS  Google Scholar 

  21. R. F. Aroca, R. A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, and J. V. Garcia-Ramos (2005). Adv. Colloid Interface Sci. 116, 45.

    Article  CAS  Google Scholar 

  22. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng (2001). Science. 294, 1901.

    Article  CAS  Google Scholar 

  23. S. Kaviya and E. Prasad (2014). ACS Sustain. Chem. Eng. 2, 699.

    Article  CAS  Google Scholar 

  24. D. Hebbalalu, J. Lalley, M. N. Nadagouda, and R. S. Varma (2013). ACS Sustain. Chem. Eng. 1, 703.

    Article  CAS  Google Scholar 

  25. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Parishcha, P. V. Ajaykumar, M. Alam, R. Kumar, and M. Sastry (2001). Nano Lett. 1, 515.

    Article  CAS  Google Scholar 

  26. E. C. Njagi, H. Huang, L. Stafford, H. Genuino, H. M. Galindo, J. B. Collins, G. E. Hoag, and S. L. Suib (2011). Langmuir. 27, 264.

    Article  CAS  Google Scholar 

  27. L. Rastogi, R. B. Sashidhar, D. Karunasagar, and J. Arunachalam (2014). Talanta. 118, 111.

    Article  CAS  Google Scholar 

  28. T. Pulliah Biodiversity in India (Daya Publishing House, Delhi, 2002).

    Google Scholar 

  29. M. P. Singh and H. Panda Medicinal Herbs with their Formulations (Daya Publishing House, Delhi, 2005).

    Google Scholar 

  30. R. Mitra and L. D. Kapoor (1972). Indian J. Pharm. 34, 171.

    Google Scholar 

  31. R. W. Sawbins Handbook of Biological Dyes and Stains—Synthesis and Industrial Applications (Wiley, New Jersey, 2010).

    Google Scholar 

  32. B. Laban, V. Vodnik, M. Dramicanin, M. Novakovic, N. Bibic, S. P. Sovilj, and M. Vasic (2014). J. Phys. Chem. C. 118, 23393.

    Article  CAS  Google Scholar 

  33. Y. G. Sun and Y. N. Xia (2002). Science. 298, 2176.

    Article  CAS  Google Scholar 

  34. P. Mulvaney (1996). Langmuir. 12, 788.

    Article  CAS  Google Scholar 

  35. S. S. Ravi, L. R. Christena, N. SaiSubramanian, and S. P. Anthony (2013). Analyst. 138, 4370.

    Article  CAS  Google Scholar 

  36. K. Arunachalam, R. Murugan, and T. Parimelazhagan Herbal Drug Research: Recent Trends & Progress (LAP Lambert Academic Publishing, Amazon.de, Saarbrücken, 2011), p. 125.

    Google Scholar 

  37. E. E. Emeka, O. C. Ojiefoh, C. Aleruchi, L. A. Hassan, O. M. Christiana, M. Rebecca, E. O. Dare, and A. E. Temitope (2014). Micron. 57, 1.

    Article  CAS  Google Scholar 

  38. J. J. Antony, M. Nivedheetha, D. Siva, G. Pradeepha, P. Kokilavani, S. Kalaiselvi, A. Sankarganesh, A. Balasundaram, V. Masilamani, and S. Achiraman (2013). Colloids Surf. B. 109, 20.

    Article  CAS  Google Scholar 

  39. K. J. Rao and S. Paria (2014). RSC Adv. 4, 28645.

    Article  CAS  Google Scholar 

  40. L. Laghi, G. P. Parpinello, D. D. Rio, L. Calani, A. U. Mattioli, and A. Versari (2010). Food Chem. 121, 783.

    Article  CAS  Google Scholar 

  41. Y. Cao, R. Zheng, X. Ji, H. Liu, R. Xie, and W. Yang (2014). Langmuir. 30, 3876.

    Article  CAS  Google Scholar 

  42. M. A. Pantoja-Castro and H. González-Rodríguez (2011). Rev. Latinoam. Quim. 39, 107.

    CAS  Google Scholar 

  43. D. Vilela, M. C. Gonzalez, and A. Escarpa (2012). Anal. Chim. Acta. 751, 24.

    Article  CAS  Google Scholar 

  44. D. Karthiga and S. P. Anthony (2013). RSC Adv. 3, 16765.

    Article  CAS  Google Scholar 

  45. S. Guoa and E. Wang (2011). Nano Today. 6, 240.

    Article  Google Scholar 

  46. X. Qian, Y. Xiao, Y. Xu, X. Guo, J. Qian, and W. Zhu (2010). Chem. Commun. 46, 6418.

    Article  CAS  Google Scholar 

  47. E. M. Nolan and S. J. Lippard (2009). Acc. Chem. Res. 42, 193.

    Article  CAS  Google Scholar 

  48. M. Yilmaz, H. Turkdemir, M. A. Kilic, E. Bayram, A. Cicek, A. Mete, and B. Ulug (2011). Mater. Chem. Phys. 130, 1195.

    Article  CAS  Google Scholar 

  49. Z. Chen, X. Zhang, H. Cao, and Y. Huang (2013). Analyst. 138, 2343.

    Article  CAS  Google Scholar 

  50. K. Farhadia, M. Forougha, R. Molaeia, S. Hajizadeha, and A. Rafipourb (2012). Sens. Actuators B. 161, 880.

    Article  Google Scholar 

  51. M. N. Alam, A. Chatterjee, S. Das, S. Batuta, D. Mandalb, and N. A. Begum (2015). RSC Adv. 5, 23419.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.M. gratefully acknowledges University Grants Commission for Rajiv Gandhi National Fellowship (UGC-RGNF-F1-17.1/2011-12/RGNF-SC-TAM-4355) and M.I. acknowledge Department of Science and Technology (DST-SERB Project No. SB/EMEQ-062/2013). We are grateful to Dr. T. Parimelazhagan and Dr. K. Arunachalam, Department of Botany, Bharathiar University, Coimbatore for his immense support during the course of the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malaichamy Ilanchelian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivel, P., Ilanchelian, M. Selective and Sensitive Colorimetric Detection of Hg2+ at Wide pH Range Using Green Synthesized Silver Nanoparticles as Probe. J Clust Sci 28, 1145–1162 (2017). https://doi.org/10.1007/s10876-016-1109-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1109-5

Keywords

Navigation