Skip to main content
Log in

A Simple, Additive Free Approach for Synthesis of Cu/Cu2O Nanoparticles: Effect of Precursors in Morphology Selectivity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A rapid, one-pot, additive free and economic synthesis of Cu/Cu2O nanocrystals with controlled size in the nanoscale regime has been outlined. The effect of different copper precursors on morphology selective synthesis of Cu/Cu2O nanoparticles via microwave irradiation has been investigated. In this study, the formation of selective cubic and spherical morphology of Cu/Cu2O nanoparticles has been achieved using copper sulphate and copper nitrate precursors respectively with 1,3-propandiol on the same reaction conditions. The 1,3-propandiol play a multiple role such as a solvent, reactant, capping agent and reducing agent in a reaction. The phase identification, surface morphology and elemental composition of as synthesized Cu/Cu2O nanoparticles were characterized using XRD, SEM, TEM and EDS techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. J. Zhu and F. Chen (2014). Chem. Rev. 114, 6462–6555.

    Article  CAS  Google Scholar 

  2. M. Baghbanzadeh, L. Carbone, P. D. Cozzoli, and C. O. Kappe (2011). Angew. Chem. Int. Ed. 50, 11312–11359.

    Article  CAS  Google Scholar 

  3. M. A. Bhosale, K. D. Bhatte, and B. M. Bhanage (2013). Powder Technol. 235, 516–519.

    Article  CAS  Google Scholar 

  4. M. A. Bhosale and B. M. Bhanage (2014). RSC Adv. 4, 15122–15130.

    Article  CAS  Google Scholar 

  5. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li (2006). Chem. Mater. 18, 867–871.

    Article  CAS  Google Scholar 

  6. H. Zhu, J. Wang, and G. Xu (2009). Cryst. Growth Des. 9, 633–638.

    Article  CAS  Google Scholar 

  7. W. Lee, Y. S. Lim, S. Kim, J. Jung, Y.-K. Han, S. Yoon, L. Piao, and S.-H. Kim (2011). J. Mater. Chem. 21, 6928–6933.

    Article  CAS  Google Scholar 

  8. J. H. Shin, S. H. Park, S. M. Hyun, J. W. Kim, H. M. Park, and J. Y. Song (2014). Phys. Chem. Chem. Phys. 16, 18226–18232.

    Article  CAS  Google Scholar 

  9. X. Shen, S. Chen, D. Mu, B. Wu, and F. Wu (2013). J. Power Sources 238, 173–179.

    Article  CAS  Google Scholar 

  10. R. M. Mohamed and E. S. Aazam (2014). Appl. Catal. A 480, 100–107.

    Article  CAS  Google Scholar 

  11. C. Hou, H. Quan, Y. Duan, Q. Zhang, H. Wang, and Y. Li (2013). Nanoscale 5, 1227–1232.

    Article  CAS  Google Scholar 

  12. G. Rena, D. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allak (2009). Int. J. Antimicrob. Agents 33, 587–590.

    Article  Google Scholar 

  13. M. A. Bhosale, T. Sasaki, and B. M. Bhanage (2014). Catal. Sci. Technol. 4, 4274–4280.

    Article  CAS  Google Scholar 

  14. L. Gou and C. J. Murphy (2003). Nano Lett. 3, 231–234.

    Article  CAS  Google Scholar 

  15. H. Y. Zhao, Y. F. Wang, and J. H. Zeng (2008). Cryst. Growth Des. 8, 3731–3734.

    Article  CAS  Google Scholar 

  16. Z. Wang, H. Wang, L. Wang, and L. Pan (2009). Cryst. Res. Technol. 44, 624–628.

    Article  CAS  Google Scholar 

  17. C. M. McShane and K.-S. Choi (2009). J. Am. Chem. Soc. 131, 2561–2569.

    Article  CAS  Google Scholar 

  18. H. Pang, F. Gao, and Q. Lu (2010). CrystEngComm 12, 406–412.

    Article  CAS  Google Scholar 

  19. P. Liu, Z. Li, W. Cai, M. Fang, and X. Luo (2011). RSC Adv. 1, 847–851.

    Article  CAS  Google Scholar 

  20. D. Chen, S. Ni, J. J. Fang, and T. Xiao (2010). J. Alloys Compd. 504, S345–S348.

    Article  Google Scholar 

  21. R. V. Kumar, Y. Mastai, Y. Diamant, and A. Gedanken (2001). J. Mater. Chem. 11, 1209–1213.

    Article  CAS  Google Scholar 

  22. Z. Ai, L. Zhang, S. Lee, and W. Ho (2009). J. Phys. Chem. C 113, 20896–20902.

    Article  CAS  Google Scholar 

  23. A. J. Wang, J. J. Feng, Z. H. Li, Q. C. Liao, Z. Z. Wang, and J. R. Chen (2012). Cryst. Eng. Comm. 14, 1289–1295.

    Article  CAS  Google Scholar 

  24. M. Salavati-Niasari and F. Davar (2009). Mater. Lett. 63, 441–443.

    Article  CAS  Google Scholar 

  25. K. S. Park, S. D. Seo, Y. H. Jin, S. H. Lee, H. W. Shim, D. H. Lee, and D. W. Kim (2011). Dalton Trans. 40, 9498–9503.

    Article  CAS  Google Scholar 

  26. M. A. Bhosale, D. R. Chenna, J. P. Ahire, and B. M. Bhanage (2015). RSC Adv. 5, 52817–52823.

    Article  CAS  Google Scholar 

  27. M. A. Bhosale and B. M. Bhanage (2015). Adv. Powder Technol. 26, 422–427.

    Article  CAS  Google Scholar 

  28. K. D. Bhatte, P. Tambade, S. Fujita, M. Arai, and B. M. Bhanage (2010). Powder Technol. 203, 415–418.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author M. A. Bhosale is grateful to Council of Scientific and Industrial Research (CSIR), India for providing Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhosale, M.A., Bhanage, B.M. A Simple, Additive Free Approach for Synthesis of Cu/Cu2O Nanoparticles: Effect of Precursors in Morphology Selectivity. J Clust Sci 28, 1215–1224 (2017). https://doi.org/10.1007/s10876-016-1124-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1124-6

Keywords

Navigation