Skip to main content
Log in

Theoretical Study on the Structural, Thermal and Phase Stability of Pt–Cu Alloy Clusters

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

A Correction to this article was published on 18 March 2021

This article has been updated

Abstract

Pt-based cluster have received much attention for their catalytic applications, while its stability property and phase diagram remain unclear. In this work, the structural, thermal and phase stability of Pt–Cu nanoclusters, with various atomic arrangement, morphologies and sizes, are studied by both atomistic simulations and theoretical model. Pt atoms tend to distribute around the surface and Cu atoms prefer occupying inner core, derived from the surface energies, lattice parameters and the binding energy of the metal bond. Furthermore, we focus on the melting points and phase diagrams of Pt–Cu nanoalloys with different morphologies and sizes. The melting point of Pt–Cu nanoparticles rises with the increasing size. The distribution of Pt atoms along surface enhances the structural and thermal stability of the Pt–Cu nanoalloys. This theoretical work serve as a case to explore the stability and segregation properties of nanoalloys by combining atomistic simulations and theoretical model, which provides a deep insight into the effect on the stability and segregation properties of bimetallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Change history

References

  1. M. Ahmed, G. A. Attard, E. Wright, and J. Sharman (2013). Methanol and formic acid electrooxidation on nafion modified Pd/Pt {1 1 1}: the role of anion specific adsorption in electrocatalytic activity. Cataly. Today 202, 128–134.

    CAS  Google Scholar 

  2. D. Alloyeau, C. Ricolleau, C. Mottet, T. Oikawa, C. Langlois, Y. Le Bouar, N. Braidy, and A. Loiseau (2009). Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nat. Mater. 8, 940.

    CAS  PubMed  Google Scholar 

  3. M. Ammam and E. B. Easton (2013). PtCu/C and Pt (Cu)/C catalysts: synthesis, characterization and catalytic activity towards ethanol electrooxidation. J. Power Sour. 222, 79–87.

    CAS  Google Scholar 

  4. F. Aqra and A. Ayyad (2011). Surface energies of metals in both liquid and solid states. Appl. Surf. Sci. 257, 6372–6379.

    CAS  Google Scholar 

  5. F. Baletto and R. Ferrando (2005). Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Modern Phys. 77, 371.

    CAS  Google Scholar 

  6. T. Bian, H. Zhang, Y. Jiang, C. Jin, J. Wu, H. Yang, and D. Yang (2015). Epitaxial growth of twinned Au–Pt core–shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 15, 7808–7815.

    CAS  PubMed  Google Scholar 

  7. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell (2004). Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials. Phys. Rev. B 69, 054102.

    Google Scholar 

  8. M. K. Carpenter, T. E. Moylan, R. S. Kukreja, M. H. Atwan, and M. M. Tessema (2012). Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 134, 8535–8542.

    CAS  PubMed  Google Scholar 

  9. J. Carton, V. Lawlor, A. Olabi, C. Hochenauer, and G. Zauner (2012). Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels. Energy 39, 63–73.

    CAS  Google Scholar 

  10. D. Cheng, S. Huang, and W. Wang (2006). Thermal behavior of core-shell and three-shell layered clusters: melting of Cu 1 Au 54 and Cu 12 Au 43. Phys. Rev. B 74, 064117.

    Google Scholar 

  11. D. Cheng, S. Yuan, and R. Ferrando (2013). Structure, chemical ordering and thermal stability of Pt–Ni alloy nanoclusters. J. Phys. 25, 355008.

    Google Scholar 

  12. L. Cheng, M. Maosheng, and M. Yanming (2013). Structural evolution of carbon dioxide under high pressure. J. Am. Chem. Soc. 135, 14167–14171.

    Google Scholar 

  13. F. Cleri and V. Rosato (1993). Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22.

    CAS  Google Scholar 

  14. C. Cui, L. Gan, M. Heggen, S. Rudi, and P. Strasser (2013). Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765.

    CAS  PubMed  Google Scholar 

  15. C. Dai, Y. Yang, Z. Zhao, A. Fisher, Z. Liu, and D. Cheng (2017). From mixed to three-layer core/shell PtCu nanoparticles: ligand-induced surface segregation to enhance electrocatalytic activity. Nanoscale 9, 8945–8951.

    CAS  PubMed  Google Scholar 

  16. F.-R. Fan, D.-Y. Liu, Y.-F. Wu, S. Duan, Z.-X. Xie, Z.-Y. Jiang, and Z.-Q. Tian (2008). Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 130, 6949–6951.

    CAS  PubMed  Google Scholar 

  17. S. S. Fenton, V. Ramani, and J. M. Fenton (2006). Active learning of electrochemical engineering principles using a solar panel/water electrolyzer/fuel cell system. Interface-Electrochem. Soc. 15, 37–42.

    CAS  Google Scholar 

  18. R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910.

    CAS  PubMed  Google Scholar 

  19. K. Fukui, B. G. Sumpter, M. D. Barnes, and D. W. Noid (1999). Molecular dynamics simulation of polymer fine particles. Phys. Mech. Prop. Polym. J. 31, 664.

    CAS  Google Scholar 

  20. J. Greeley, I. E. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, and J. K. Nørskov (2009). Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556.

    CAS  PubMed  Google Scholar 

  21. G. Guisbiers (2010). Size-dependent materials properties toward a universal equation. Nanoscale Res. Lett. 5, 1132.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. G. Guisbiers and G. Abudukelimu (2013). Influence of nanomorphology on the melting and catalytic properties of convex polyhedral nanoparticles. J. Nanoparticle Res. 15, 1431.

    Google Scholar 

  23. G. Guisbiers and L. Buchaillot (2009). Universal size/shape-dependent law for characteristic temperatures. Phys. Lett. A 374, 305–308.

    CAS  Google Scholar 

  24. G. G. Guisbiers, S. Mejia-Rosales, S. Khanal, F. Ruiz-Zepeda, R. L. Whetten, and M. José-Yacaman (2014). Gold–copper nano-alloy, “Tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett. 14, 6718–6726.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. G. G. Guisbiers, R. N. Mendoza-Cruz, L. Bazán-Díaz, J. J. S. Velázquez-Salazar, R. Mendoza-Perez, J. A. Robledo-Torres, J.-L. Rodriguez-Lopez, J. M. Montejano-Carrizales, R. L. Whetten, and M. José-Yacamán (2015). Electrum, the gold–silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano 10, 188–198.

    PubMed  PubMed Central  Google Scholar 

  26. K. Gupta (2009). The Cu–Ni–Y (Copper–Nickel–Yttrium) system. J. Phase Equilibria Diffus. 30, 651.

    CAS  Google Scholar 

  27. B. Jürgen and S. P. Rainer (2004). Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. Phys. Rev. Lett. 93, 115503.

    Google Scholar 

  28. F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, and P. Zelenay (2011). Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114–130.

    CAS  Google Scholar 

  29. Q. Jiang and Z. Wen Thermodynamics of materials (Springer, New York, 2011).

    Google Scholar 

  30. J.-W. Kang and H.-J. Hwang (2001). Molecular dynamics simulation study of the mechanical properties of rectangular Cu nanowires. J. Kor. Phys. Soc. 38, 695–700.

    CAS  Google Scholar 

  31. C. Kittel and D. F. Holcomb (1967). Introduction to solid state physics. Am. J. Phys. 35, 547–548.

    Google Scholar 

  32. C.-L. Kuo and P. Clancy (2005). Melting and freezing characteristics and structural properties of supported and unsupported gold nanoclusters. J. Phys. Chem. B 109, 13743–13754.

    CAS  PubMed  Google Scholar 

  33. H. Lei (2001). Melting of free copper clusters. J. Phys. 13, 3023.

    CAS  Google Scholar 

  34. L. Li, E. Yifeng, J. Yuan, X. Luo, Y. Yang, and L. Fan (2011). Electrosynthesis of Pd/Au hollow cone-like microstructures for electrocatalytic formic acid oxidation. Electrochimica Acta 56, 6237–6244.

    CAS  Google Scholar 

  35. M. Li and D. Cheng (2013). Molecular dynamics simulation of the melting behavior of crown-jewel structured Au–Pd nanoalloys. J. Phys. Chem. C 117, 18746–18751.

    CAS  Google Scholar 

  36. L. Liang, D. Liu, and Q. Jiang (2003). Size-dependent continuous binary solution phase diagram. Nanotechnology 14, 438.

    CAS  Google Scholar 

  37. C. Lu and C. Chen (2018). High-pressure evolution of crystal bonding structures and properties of FeOOH. J. Phys. Chem. Lett. 9, 2181–2185.

    CAS  PubMed  Google Scholar 

  38. U. Mizutani (2012). Hume-Rothery rules for structurally complex alloy phases. MRS Bull. 37, 169.

    Google Scholar 

  39. P. Pawlow (1909). Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers. Zeitschrift für physikalische Chemie 65, 1–35.

    CAS  Google Scholar 

  40. L. O. Paz-Borbón, R. L. Johnston, G. Barcaro, and A. Fortunelli (2008). Structural motifs, mixing, and segregation effects in 38-atom binary clusters. J. Chem. Phys. 128, 134517.

    PubMed  Google Scholar 

  41. Z. Peng, J. Wu, and H. Yang (2009). Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater. 22, 1098–1106.

    Google Scholar 

  42. P. Philipsen and E. Baerends (1996). Cohesive energy of 3d transition metals: density functional theory atomic and bulk calculations. Phys. Rev. B 54, 5326.

    CAS  Google Scholar 

  43. P. Puri and V. Yang (2007). Effect of particle size on melting of aluminum at nano scales. J. Phys. Chem. C 111, 11776–11783.

    CAS  Google Scholar 

  44. E. Roduner (2006). Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592.

    CAS  PubMed  Google Scholar 

  45. G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, and R. Ferrando (2004). Magic polyicosahedral core-shell clusters. Phys. Rev. Lett. 93, 105503.

    CAS  PubMed  Google Scholar 

  46. H. P. Singh, N. Gupta, S. K. Sharma, and R. K. Sharma (2013). Synthesis of bimetallic Pt–Cu nanoparticles and their application in the reduction of rhodamine B. Coll. Surf. A Physicochem. Eng. Aspects 416, 43–50.

    Google Scholar 

  47. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti (1983). Bond-orientational order in liquids and glasses. Phys Rev B 28, 784.

    CAS  Google Scholar 

  48. B. Sundman and J. Ågren (1981). A regular solution model for phases with several components and sublattices, suitable for computer applications. J Phys Chem Solids 42, 297–301.

    CAS  Google Scholar 

  49. J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn (2011). Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3, 546.

    CAS  PubMed  Google Scholar 

  50. L.-L. Wang and D. D. Johnson (2009). Predicted trends of core − shell preferences for 132 late transition-metal binary-alloy nanoparticles. J Am Chem Soc 131, 14023–14029.

    CAS  PubMed  Google Scholar 

  51. F. L. Williams and D. Nason (1974). Binary alloy surface compositions from bulk alloy thermodynamic data. Surf Sci 45, 377–408.

    CAS  Google Scholar 

  52. Y. Yang, Z. Zhao, R. Cui, H. Wu, and D. Cheng (2014). Structures, thermal stability, and chemical activity of crown-jewel-structured Pd–Pt nanoalloys. J. Phys. Chem. C 119, 10888–10895.

    Google Scholar 

  53. Y. Yang, Z. Zhao, R. Cui, H. Wu, and D. Cheng (2015). Structures, thermal stability, and chemical activity of crown-jewel-structured Pd–Pt nanoalloys. J. Phys. Chem. C 119, 10888–10895.

    CAS  Google Scholar 

  54. Z. Zhao, A. Fisher, and D. Cheng (2016). Phase diagram and segregation of Ag–Co nanoalloys: insights from theory and simulation. Nanotechnology 27, 115702.

    PubMed  Google Scholar 

  55. Z. Zhao, M. Li, D. Cheng, and J. Zhu (2014). Understanding the structural properties and thermal stabilities of Au–Pd–Pt trimetallic clusters. Chem. Phys. 441, 152–158.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21576008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoxiang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, C., Xu, H., Wen, H. et al. Theoretical Study on the Structural, Thermal and Phase Stability of Pt–Cu Alloy Clusters. J Clust Sci 31, 615–626 (2020). https://doi.org/10.1007/s10876-019-01753-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01753-y

Keywords

Navigation