Skip to main content

Advertisement

Log in

Technologies and Solutions for Data Display in the Operating Room

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Recent advances in technology have led to the introduction of a variety of innovative devices, each with their own platform for data display, into the operating room (OR). While these innovative applications are expanding the traditional boundaries of the surgical space and enhancing treatment capabilities, the introduction of additional screens and displays is placing an ever-increasing load on the OR team.

This review describes the main data display platforms currently available in ORs: computer monitors with CRT (cathode ray tube) or LCD (liquid crystal display) screens, suspended imaging displays, wearable computers (WC), auditory displays and tactile (haptic) displays. The different display platforms are evaluated according to their compatibility with the characteristics of the working environment (OR), the monitoring task, and the users (the surgical team).

No single display configuration provides an ultimate solution for presenting patient data in the OR. A multi-sensory data display including visual, acoustic and haptic manipulation is suggested as a promising configuration for data display in the OR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Herron DM, Gagner M, Kenyon TL, Swanstrom LL. The minimally invasive surgical suite enters the 21st century. Surg Endosc 2001; 15: 415–422.

    Article  PubMed  CAS  Google Scholar 

  2. Gallagher AG, Smith CD. Human factors lessons learned from the Minimally Invasive Surgery revolution (or don't forget the surgeon). Sem Laparososc Surg 2003; 10: 127–139.

    Google Scholar 

  3. Feussner H. The operating room of the future: a view from Europe. Sem Laparosc Surg 2003; 10: 149–156.

    CAS  Google Scholar 

  4. Rattner DW, Park A. Advanced devices for the operating room. Sem Laparosc Surg 2003; 10: 85–89.

    Google Scholar 

  5. Satava RM. The operating room of the future: observations and commentary. Sem Laparoscopic Surg 2003; 10: 99–105.

    Google Scholar 

  6. Satava RM. Future trends in the design and application of surgical robots. Sem Laparosc Surg 2004; 11: 129–135.

    Google Scholar 

  7. Satava RM. Disruptive vision; a robot is not a machine…Surg Endosc 2004; 18: 617–620.

    Google Scholar 

  8. Merrell RC, Jarrell BE, Schenkman NS et al. Telemedicine for the operating room of the future. Sem Laparosc Surg 2003; 10: 91–94.

    Google Scholar 

  9. Doarn CR. Telemedicine in tomorrow's operating room: A natural fit. Sem Laparosc Surg 2003; 10: 121–126.

    Google Scholar 

  10. Berguer R. Ergonomics in the operating room. Amer J Surg 1996; 171: 385–386.

    Article  PubMed  CAS  Google Scholar 

  11. Berguer R. The application of ergonomics in the work environment of general surgeons. Rev Environ Health1997; 12: 99–106.

  12. Gaba DM, Howard SK, Small SD. Situation awareness in anesthesiology. Human Factors 1995; 37: 20–31.

    Article  PubMed  CAS  Google Scholar 

  13. Cook RI, Woods DD. Adapting to the new technology in the operating room. Human Factors 1996; 38: 593–613.

    Article  PubMed  CAS  Google Scholar 

  14. Wickens CD, Hollands JC. Attention in perception and display space. In: Wickens CD, Hollands JG, eds. Engineering Psychology and Human Performance. New Jersey: Prentice Hall 2000: 69–118.

  15. Cook RI, Woods DD. Implications of automation surprises in aviation for the future of total intravenous anesthesia (TIVA). J Clin Anesthesia 1996; 8: 29S–37S.

    Article  CAS  Google Scholar 

  16. Helmreich RL, Schaefer HG. Team performance in the operating room. In: Bogner MS, ed. Human Error in Medicine. Hillsdale, New Jersey: Lawrence Erlbaum Assoc. Pub. 1994: 225–253.

  17. Boquet G, Bushman JA, Davenport HT. The anaesthetic machine- a study of function and design. Br J Anaesth 1980; 52: 61–66.

    Article  PubMed  CAS  Google Scholar 

  18. McDonald JS, Dzwonczyk RR. A time and motion study of the anaesthetist's intraoperative time. Br J Anaesth 1988; 61: 738–742.

    Article  PubMed  CAS  Google Scholar 

  19. McDonald JS, Dzwonczyk RR, Gupta B, et al. A second time- study of the anaesthetist's intraoperative period. Br J Anesth 1990; 64: 582–585.

    Article  CAS  Google Scholar 

  20. Loeb RG. A measure of intraoperative attention to monitor displays. Anesth Analg 1993; 76: 337–341.

    PubMed  CAS  Google Scholar 

  21. Weinger MB, Herndon OW, Zornow MH, et al. An objective methodology for task analysis and workload assessment in anesthesia providers. Anesthesiology 1994; 80: 77–92.

    Article  PubMed  CAS  Google Scholar 

  22. Weinger MB, Herndon OW, Gaba DM. The effect of electronic record keeping and transesophageal echocardiography on task distribution, workload, and vigilance during cardiac anesthesia. Anesthesiology 1997; 87; 144–155.

    Article  PubMed  CAS  Google Scholar 

  23. Seaguell FJ, Sanderson PM. Anesthesia alarms in context: An observational study. Human Factors 2001; 43: 66–78.

    Article  Google Scholar 

  24. Weinger MT, Englund CE. Ergonomic and human factors affecting anesthetic vigilance and monitoring performance in the operating room environment. Anesthesiology 1990; 73: 995–1021.

    Article  PubMed  CAS  Google Scholar 

  25. Hanna GB, Shimi SM, Cuschieri A. Task performance in endoscopic surgery is influenced by location of the image display. Ann Surg 1998; 227: 481–484.

    Article  PubMed  CAS  Google Scholar 

  26. Wentink M, Jakimowicz JJ, Vos LM et al. Quantitative evaluation of three advanced laparoscopic viewing technologies: a stereo endoscope, an image projection display, and a TFT display. Surg Endosc 2002; 16: 1237–1241.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang Y, Drews FA, Westenskow DR et al. Effects of integrated graphical displays on situation awareness in anesthesiology. Cognition Technol & Work 2002; 4: 82–90.

    Article  Google Scholar 

  28. Westhorpe RN. Ergonomics and monitoring. Anaesth & Intensive Care 1988; 16: 71–75.

    CAS  Google Scholar 

  29. Austin JW. Evaluation of a “Head up” display for cardiopulmonary bypass. J Extra-Corp Technol 2000; 32: 49–53.

    CAS  Google Scholar 

  30. Gurushanthaiah K, Weinger MB, Englund CE. Visual display format affects the ability of anesthesiologists to detect acute physiologic changes. Anesthesiology 1995; 83: 1184–1193.

    Article  PubMed  CAS  Google Scholar 

  31. Blike GT, Surgenor SD, Whalen K. A graphical object display improves anesthesiologists' performance on a simulated diagnostic task. J Clin Monitor Comput 1999; 15: 37–44.

    Article  CAS  Google Scholar 

  32. Michels P, Gravenstein D, Westenskow DR. An integrated graphic data display improves detection and identification of critical events during anesthesia. J Clin Monitoring 1997; 13: 249–259.

    Article  CAS  Google Scholar 

  33. Brown SI, Frank TG, Cuschieri A et al. Optimization of the projection screen in a display system for minimal access surgery. Surg Endosc 2003; 17: 1251–1255.

    Article  PubMed  CAS  Google Scholar 

  34. Seales WB, Caban J. Visualization trends: applications in the operating room. Sem Laparoscopic Surg 2003; 10: 107–114.

    Google Scholar 

  35. Cuschieri A. Visual display technology for endoscopic surgery. Min. Inves. Ther & Allied Technol 1996; 5: 427–434.

    Article  Google Scholar 

  36. Srinivasan R. Effect of selected in-vehicle route guidance systems on driver reaction times. Human Factors 1997; 39: 200–215.

    Article  PubMed  CAS  Google Scholar 

  37. Tufano DR. Automotive HUDs: The overlooked safety issues. Human Factors 1997; 39: 303–311.

    Article  PubMed  CAS  Google Scholar 

  38. The Laser Cube. Available at: http://www.laser-magic.com/lasercube.html. Accessed March 22, 2005.

  39. Barfield W, Caudell T. Fundamentals of wearable computers and augmented reality. London: Lawrence Erlbaum Associates 2001.

  40. De Rossi D, ed. New Generation of Wearable Systems for eHealth: towards A Revolution of Citizens' Health and Life Style. International Workshop Dec. 11–14, 2003.

  41. Barfield W, Caudell T. Basic concepts in wearable computers and augmented reality. In: Barfield W, Caudell T, eds. Fundamentals of wearable computers and augmented reality. London: Lawrence Erlbaum Associates; 2001: 3–26.

  42. Barfield W, Mann S, Baired K, et al. Computational clothing and accessories. In: Barfield W, Caudell T, eds. Fundamentals of wearable computers and augmented reality. London: Lawrence Erlbaum Associates; 2001: 471–509.

  43. Catrysse M, Puers R, Hertleer C, et al. Towards the integration of textile sensors in a wireless monitoring suit. Sens Actuators A Phys 2004; 114: 302–311.

    Article  CAS  Google Scholar 

  44. Satava RM, Jones SB. Medical applications for wearable computing. In: Barfield W, Caudell T, eds. Fundamentals of wearable computers and augmented reality. London: Lawrence Erlbaum Associates; 2001: 649–663.

  45. Rolland JP, Fuchs H. Optical versus video see-through head mounted displays. In: Barfield W, Caudell T, eds. Fundamentals of wearable computers and augmented reality. London: Lawrence Erlbaum Associates; 2001: 113–156.

  46. Wilhelm FH, Handke EA, Roth WT. Measurement of respiratory and cardiac function by the LifeShirtTM: initial assessment of usability and reliability during ambulatory sleep monitoring. Biol Psychol 2002; 59: 250–251.

    Google Scholar 

  47. Levy ML, Day JD, Albuquerque F, et al. Heads-up intraoperative endoscopic imaging: A prospective evaluation of techniques and limitations. Neurosurgery 1997; 40: 526–531.

    Article  PubMed  CAS  Google Scholar 

  48. Block FE, Yablok DO, McDonald JS. Clinical evaluation of the “head-up” display of anesthesia data. Int.J Clin Monit Comput 1995; 12: 21–24.

    Article  PubMed  Google Scholar 

  49. Stokes AF, Wickens CD. Aviation displays. In: Weiner ER, Nagel DC, Eds. Human Factors in Aviation. San Diego, Calif: Academic Press; 1988: 387–432.

  50. Cuschieri A. Visual displays and visual perception in minimal access surgery. Sem Laparoscop Surg 1995; 2: 209–214.

    Google Scholar 

  51. Van Koesveld JJM, Tetteroo GWM, de Graaf EJR. Use of head mounted display in transanal endoscopic microsurgery. Surg Endosc 2003; 17: 943–946.

    Article  PubMed  CAS  Google Scholar 

  52. Craven RM, McIndoe AK. Continuous auditory monitoring- how much information do we register? Brit J Anesth 1999; 83: 747–749.

    Google Scholar 

  53. Watson M, Sanderson P, Russell WJ. Tailoring reveals information requirements: the case of an aesthesia alarm. Interact Comput 2004; 16: 271–293.

    Article  Google Scholar 

  54. Loeb RG, Fitch WT. A laboratory evaluation of an auditory display designed to enhance intraoperative monitoring. Anesth Analg. 2002; 94: 362–368.

    Article  PubMed  Google Scholar 

  55. Watson M, Sanderson P. Sonification supports eyes-free respiratory monitoring and task time-sharing. Human Factors 2004; 46: 497–517.

    Article  PubMed  Google Scholar 

  56. Bullinger HJ, Bauer W, Braun M. Virtual environments. In: Salvendy G. ed. Handbook of human factors and ergonomics. New York: John Willey & Sons, Inc; 1997: 1725–1759.

  57. Loeb RG. Monitor surveillance and vigilance of anesthesia residents. Anesthesiology 1994; 80: 527–533.

    Article  PubMed  CAS  Google Scholar 

  58. Finley GA, Cohen AJ. Perceived urgency and the anaesthetist: responses to common operating room monitor alarms. Can J Anaesth 1991; 38: 958–964.

    Article  PubMed  CAS  Google Scholar 

  59. Loeb RC, Jones BR, Leonard RA et al. Recognition accuracy of current operating room alarms. Anesth Analg 1992; 75: 499–505.

    Article  PubMed  CAS  Google Scholar 

  60. Loeb RG. A measure of intraoperative attention to monitor display. Anesth Analg 1993; 76: 337–341.

    PubMed  CAS  Google Scholar 

  61. Sarter NB. Multimodal information presentation in support of human-automation communication and coordination. In: Salas E, ed. Advances in Human Performance and Cognitive Engineering Research. New York; JAI Press; 2002: 13–36.

  62. Tan HZ, Pentland A., Tactual displays for sensory substitution and wearable computers. In: Barfield W, Caudell T, eds. Fundamentals of wearable computers and augmented reality. London: Lawrence Erlbaum Associates; 2001: 579–598.

  63. Sklar AE, Sarter NB. Good vibrations: Tactile feedback in support of attention allocation and human-automation coordination in event-driven domains. Human Factors 1999; 41: 543–552.

    Article  PubMed  CAS  Google Scholar 

  64. Putsep E. Modern Hospital. London: Lloyd-luke Ltd, 1981.

  65. Shapiro RA, Berland T. Noise in the operating room. NEJM 1972; 287: 1236–1238.

    PubMed  CAS  Google Scholar 

  66. Alarcon A, Berguer R. A comparison of operating room crowding between open and laparoscopic operations. Surg Endosc 1996; 10: 916–919.

    Article  PubMed  CAS  Google Scholar 

  67. Luttmann A, Sokeland J, Laurig W. Muscular strain and fatigue among urologists during transurethral resections using direct and monitor endoscopy. Eur Urol 1998; 43: 6–14.

    Article  Google Scholar 

  68. Sheedy J, Bergstrom N. Performance and comfort on near-eye computer displays. Optom Vis Sci 2002; 79: 306–312.

    Article  PubMed  Google Scholar 

  69. Woods AT, Newell FN. Visual, haptic and cross-modal recognition of objects and scenes. J Physiol 2004; 98: 147–159.

    Google Scholar 

  70. Oviatt S. Multimodal interface. In: Jacko J, Sears A, eds. Handbook of Human-Computer Interaction, New Jersey, Lawrence Erlbaum; 2003: 286–304.

  71. Gaba DM, Lee T. Measuring the workload of the anesthesiologist. Anesth Analg 1990; 71: 354–361.

    Article  PubMed  CAS  Google Scholar 

  72. Andre AD, Wickens CD. When users want what's not best for them. Ergonomics in Design 1995; 7: 10–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemi Bitterman D.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bitterman, N. Technologies and Solutions for Data Display in the Operating Room. J Clin Monit Comput 20, 165–173 (2006). https://doi.org/10.1007/s10877-006-9017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-006-9017-0

Keywords

Navigation