Skip to main content
Log in

Universality of Crystallographic Pinning

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study traveling waves for reaction diffusion equations on the spatially discrete domain \({\mathbb Z^2}\). The phenomenon of crystallographic pinning occurs when traveling waves become pinned in certain directions despite moving with non-zero wave speed in nearby directions. In [19] it was shown that crystallographic pinning occurs for all rational directions, so long as the nonlinearity is close to the sawtooth, which itself was considered in [6]. In this paper we show that crystallographic pinning holds in the horizontal and vertical directions for bistable nonlinearities which satisfy a specific computable generic condition. The proof is based on dynamical systems. In particular, it relies on an examination of the heteroclinic chains which occur as singular limits of wave profiles on the boundary of the pinning region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Robbin, J.: Transversal mappings and flows. An appendix by Al Kelley. W.A. Benjamin Inc., New York, Amsterdam (1967)

  2. Bangert V.: On minimal laminations of the torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 6(2), 95–138 (1989)

    MATH  MathSciNet  Google Scholar 

  3. Bates P.W., Chmaj A.: A discrete convolution model for phase transitions. Arch. Ration. Mech. Anal. 150(4), 281–305 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bell J.: Some threshold results for models of myelinated nerves. Math. Biosci. 54(3-4), 181–190 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bell J., Cosner C.: Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons. Quart. Appl. Math. 42(1), 1–14 (1984)

    MATH  MathSciNet  Google Scholar 

  6. Cahn J.W., Mallet-Paret J., Van Vleck E.S.: Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59(2), 455–493 (1999)

    MATH  MathSciNet  Google Scholar 

  7. Carpio A., Bonilla L.L.: Pulse propagation in discrete systems of coupled excitable cells. SIAM J. Appl. Math. 63(2), 619–635 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chow S.-N., Hale J.K.: Methods of bifurcation theory. Fundamental principles of mathematical science, vol. 251. Springer-Verlag, New York (1982)

    Google Scholar 

  9. Chow S.-N., Mallet-Paret J., Van Vleck E.S.: Pattern formation and spatial chaos in spatially discrete evolution equations. Random Comput. Dynam. 4(2–3), 109–178 (1996)

    MATH  MathSciNet  Google Scholar 

  10. Coddington E.A., Levinson N.: Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York, Toronto, London (1955)

    MATH  Google Scholar 

  11. Elmer C.E., Van Vleck E.S.: Analysis and computation of traveling wave solutions of bistable differential-difference equations. Nonlinearity 12(4), 771–798 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Erneux T., Nicolis G.: Propagating waves in discrete bistable reaction-diffusion systems. Phys. D 67(1–3), 237–244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fáth G.: Propagation failure of traveling waves in a discrete bistable medium. Phys. D 116(1-2), 176–190 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Firth W.J.: Optical memory and spatial chaos. Phys. Rev. Lett. 61(3), 329–332 (1988)

    Article  MathSciNet  Google Scholar 

  15. Hirsch, M.W.: Differential topology. In: Graduate texts in mathematics, vol. 33. Springer-Verlag, New York (1994), (Corrected reprint of the 1976 original)

  16. Hupkes H.J., Lunel S.M.V.: Analysis of Newton’s method to compute travelling waves in discrete media. J. Dynam. Differ. Equ. 17(3), 523–572 (2005)

    Article  MATH  Google Scholar 

  17. James G.: Centre manifold reduction for quasilinear discrete systems. J. Nonlinear Sci. 13(1), 27–63 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Keener J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47(3), 556–572 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mallet-Paret, J.: Crystallographic pinning: direction dependent pinning in lattice differential equations. J. Differ. Equ. (to appear)

  20. Mallet-Paret J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dynam. Differ. Equ. 11(1), 49–127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mallet-Paret, J.: Traveling waves in spatially discrete dynamical systems of diffusive type. In: Dynamical systems. Lecture Notes in Math., vol. 1822, pp. 231–298. Springer, Berlin (2003)

  22. Matthies K., Wayne C.E.: Wave pinning in strips. Proc. R. Soc. Edinb. A 136(5), 971–995 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Moser J.: Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 3(3), 229–272 (1986)

    MATH  Google Scholar 

  24. Nussbaum R.D.: Positive operators and elliptic eigenvalue problems. Math. Z. 186(2), 247–264 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Palmer K.J.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55(2), 225–256 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pérez-Muñuzuri V., Pérez-Villar V., Chua L.O.: Propagation failure in linear arrays of Chua’s circuits. Internat. J. Bifur. Chaos Appl. Sci. Eng. 2(2), 403–406 (1992)

    Article  MATH  Google Scholar 

  27. Rabinowitz P.H., Stredulinsky E.: On a class of infinite transition solutions for an Allen-Cahn model equation. Discret. Cont. Dyn. Syst. 21(1), 319–332 (2008)

    MATH  MathSciNet  Google Scholar 

  28. Smale S.: An infinite dimensional version of Sard’s theorem. Am. J. Math. 87, 861–866 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  29. Thieme H.R.: Remarks on resolvent positive operators and their perturbation. Discret. Cont. Dyn. Syst. 4(1), 73–90 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. In: Dynamics reported. Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, pp. 89–169. Wiley, Chichester (1989)

  31. Vanderbauwhede, A., Iooss, G.: Center manifold theory in infinite dimensions. In: Dynamics reported: expositions in dynamical systems. Dynam. Report. Expositions Dynam. Systems (N.S.) vol. 1, pp. 125–163. Springer, Berlin (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Mallet-Paret.

Additional information

Dedicated to Professor Jack K. Hale on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, A., Mallet-Paret, J. Universality of Crystallographic Pinning. J Dyn Diff Equat 22, 79–119 (2010). https://doi.org/10.1007/s10884-010-9157-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-010-9157-2

Keywords

Navigation