Skip to main content
Log in

Negatively Invariant Sets and Entire Solutions

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Negatively invariant compact sets of autonomous and nonautonomous dynamical systems on a metric space, the latter formulated in terms of processes, are shown to contain a strictly invariant set and hence entire solutions. For completeness the positively invariant case is also considered. Both discrete and continuous time systems are considered. In the nonautonomous case, the various types of invariant sets are in fact families of subsets of the state space that are mapped onto each other by the process. A simple example shows the usefulness of the result for showing the occurrence of a bifurcation in a nonautonomous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dafermos C.M.: An invariance principle for compact processes. J. Differ. Equ. 9, 239–252 (1971)

    Article  MathSciNet  Google Scholar 

  2. Fonda A.: Uniformly persistent semidynamical systems. Proc. Am. Math. Soc. 104, 111–116 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Garay B.G., Kloeden P.E.: Discretization near compact invariant sets. Random Comput. Dyn. 5, 93–123 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Grüne, L.: Asymptotic behavior of dynamical and control systems under perturbation and discretization. In: Lecture Notes in Mathematics, vol. 1783, x + 231 pp. Springer-Verlag, Berlin (2002)

  5. Hale J.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  6. Hofbauer J., So J.W.H.: Uniform persistence and repellors for maps. Proc. Am. Math. Soc. 107, 1137–1142 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Johnson R.A., Kloeden P.E., Pavani R.: Two–step transition in nonautonomous bifurcations: an explanation. Stoch. Dyn. 2, 67–92 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kloeden P.E.: Pitchfork and transcritical bifurcations in systems with homogeneous nonlinearities and an almost periodic time coefficient. Commun. Pure Appl. Anal. 3, 161–173 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kloeden P.E., Siegmund S.: Bifurcation and continuous transition of attractors in autonomous and nonautonomous systems. Int. J. Bifur. Chaos Appl. Sci. Eng. 15, 743–762 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Langa J.A., Suárez A.: Pullback permanence for non-autonomous partial differential equations. Electron. J. Differ. Equ. 72, 1–20 (2002)

    Google Scholar 

  11. Langa J.A., Robinson J.C., Suárez A.: Stability, instability and bifurcation phenomena in non-autonomous differential equations. Nonlinearity 15, 887–903 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Langa J.A., Robinson J.C., Suárez A.: Bifurcations in non-autonomous scalar equations. J. Differ. Equ. 221, 1–35 (2006)

    Article  MATH  Google Scholar 

  13. Mallet-Paret J.: Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. J. Differ. Equ. 22, 331–348 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Núñez C., Obaya R.: A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete Contin. Dyn. Syst. Ser. B 9, 701–730 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pötzsche C.: Nonautonomous bifurcations of bounded solutions I: A Lyapunov–Schmidt approach. Discrete Contin. Dyn. Syst. Ser. B 14(2), 739–776 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rasmussen, M.: Attractivity and bifurcation for nonautonomous dynamical systems. In: Springer Lecture Notes in Mathematics, vol. 1907. Springer, Berlin (2007)

  17. Sacker, R.J., Sell, G.R.: Lifting properties in skew-product flows with applications to differential equations. Mem. Am. Math. Soc. 11, iv + 67 (1977)

  18. Sacker R.J., Sell G.R.: Dichotomies for linear evolutionary equations in Banach spaces. J. Differ. Equ. 113(1), 17–67 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sell G.R.: A biographical sketch of Robert J. Sacker. J. Differ. Equ. Appl. 15, 737–751 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sell G.R., You Y.: Dynamics of Evolutionary Equations. Springer-Verlag, New York (2002)

    MATH  Google Scholar 

  21. Sibirsky K.S.: Introduction to Topological Dynamics. Noordhoff International Publishing, Leyden (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Kloeden.

Additional information

Dedicated to Russell Johnson on the occasion of his sixtieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloeden, P.E., Marín-Rubio, P. Negatively Invariant Sets and Entire Solutions. J Dyn Diff Equat 23, 437–450 (2011). https://doi.org/10.1007/s10884-010-9196-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-010-9196-8

Keywords

Mathematics Subject Classification (2000)

Navigation