Skip to main content
Log in

Repelling Dynamics Near a Bykov Cycle

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

What set does an experimenter see while he simulating numerically the dynamics near a Bykov cycle? In this paper, we discuss the fate of typical trajectories near a Bykov cycle for a \(C^1\)-vector field and we establish that despite the existence of shift dynamics (chaos) nearby, Lebesgue—almost all trajectories starting in a small neighbourhood of a Bykov cycle are repelled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. In our case, they are smooth.

References

  1. Aguiar, M., Castro, S.B., Labouriau, I.S.: Simple vector fields with complex behaviour. Int. J. Bifurc. Chaos 16(2), 369–381 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguiar, M.A.D., Labouriau, I.S., Rodrigues, A.A.P.: Swicthing near a heteroclinic network of rotating nodes. Dyn Syst Int J 25(1), 75–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brannath, W.: Heteroclinic networks on the tetrahedron. Nonlinearity 7, 1367–1384 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birkhoff, G. D.: Dynamical systems. Am. Math. Soc. Colloq. Publ. 9, 295 (1927)

  5. Birkhoff, G.D.: Nouvelles recherches sur les systèmes dynamiques. Memorie Pont. Acad. Sci. Novo. Lyncaei 53(1), 85–216 (1935)

    MathSciNet  Google Scholar 

  6. Bowen, R.: A horseshoe with positive measure. Invent. Math. 29, 203–204 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics. Springer, New York (1975)

  8. Buescu, J.: Exotic Attractors, Progress in Mathematics, Vol. 153. Birkhauser Verlag, Basel (1997)

  9. Bykov, V.V.: Orbit structure in a neighbourhood of a separatrix cycle containing two saddle-foci. Am. Math. Soc. Transl. 200, 87–97 (2000)

    MathSciNet  Google Scholar 

  10. Fernández-Sánchez, F., Freire, E., Rodríguez-Luis, A.J.: T-points in a \(Z_2\)-symmetric electronic oscillator. (I) Analysis. Nonlinear Dyn. 28, 53–69 (2002)

    Google Scholar 

  11. Field M.: Lectures on Bifurcations, Dynamics and Symmetry. Pitman Research Notes in Mathematics Series, Vol. 356. Longman, New York (1996)

  12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, Vol. 42. Springer, New York (1983)

  13. Homburg, A.J.: Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbit to a saddle-focus equilibria. Nonlinearity 15, 411–428 (2002)

    Article  MathSciNet  Google Scholar 

  14. Homburg, A.J., Sandstede, B.: Homoclinic and heteroclinic bifurcations in vector fields. In: Handbook of Dynamical Systems, vol. 3, pp. 379–524. North Holland, Amsterdam (2010)

  15. Ibáñez, S., Rodríguez, J.A.: Shilnikov configurations in any generic unfolding of the nilpotent singularity of codimension three in \( {R}^3\). J. Differ. Equ. 208, 147–175 (2008)

    Article  Google Scholar 

  16. Koon, W.S., Lo, M., Marsden, J., Ross, S.: Heteroclinic connections between periodic orbits and resonance transition in celestial mechanics. In: Control and Dynamical Systems Seminar. California Institute of Technology, Pasadena (1999)

  17. Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Theory Dyn. Syst. 15, 121–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry, II. Proc. R. Soc. Edinb. 134A, 1177–1197 (2004)

    Article  MathSciNet  Google Scholar 

  19. Labouriau, I.S., Rodrigues, A.A.P.: Global generic dynamics close to symmetry. J. Differ. Edu. 253(8), 2527–2557 (2012)

    Google Scholar 

  20. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mora, L., Viana, M.: Abundance of strange attractors. Acta Math. 171, 1–71 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  23. Podvigina, O., Ashwin, P.: On local attraction properties and a stability index for heteroclinic connections. Nonlinearity 24, 887–929 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13, 1–270 (1890)

    MATH  Google Scholar 

  25. Rodrigues, A.A.P.: Persistent switching near a heteroclinic model for the geodynamo problem. Chaos Solitons Fractals 47, 73–86 (2013)

    Google Scholar 

  26. Rodrigues, A.A.P., Labouriau, I.S.: Spiraling sets near a heteroclinic network, submitted.

  27. Rodrigues, A.A.P., Labouriau, I.S., Aguiar, M.A.D.: Chaotic double cycling. Dyn. Syst. Int. J. 26(2), 199–233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Samovol, V.S.: Linearization of a system of differential equations in the neighbourhood of a singular point. Sov. Math. Dokl. 13, 1255–1959 (1972)

    MATH  Google Scholar 

  29. Shilnikov, L.P.: Some cases of generation of periodic motion from singular trajectories. Math. USSR Sbornik 61(103), 443–466 (1963)

    Google Scholar 

  30. Shilnikov, L.P.: A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl. 6, 163–166 (1965)

    Google Scholar 

  31. Shilnikov, L.P.: The existence of a denumerable set of periodic motions in four dimensional space in an extended neighbourhood of a saddle-focus. Sovit. Math. Dokl. 8(1), 54–58 (1967)

    Google Scholar 

  32. Smale, S.: Diffeomorphisms with many periodic orbits. In: Cairus, S. (ed.) Differential Combinatorial Topology, pp. 63–86. Princeton University Press, Princeton (1960)

  33. Wiggins, S.: Introduction in Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

Download references

Acknowledgments

The author would like to express his gratitude to Isabel Labouriau and Mário Bessa for helpful discussions. CMUP is supported by the European Regional Development Fund through the programme COMPETE and by the Portuguese Government through the Fundação para a Ciência e a Tecnologia (FCT) under the project PEst-C/MAT/UI0144/2011. A.A.P. Rodrigues was supported by the grant SFRH/BPD/84709/2012

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre A. P. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, A.A.P. Repelling Dynamics Near a Bykov Cycle. J Dyn Diff Equat 25, 605–625 (2013). https://doi.org/10.1007/s10884-013-9289-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-013-9289-2

Keywords

Mathematics Subject Classification (2000)

Navigation