Skip to main content
Log in

Computer Assisted Proof of Transverse Saddle-to-Saddle Connecting Orbits for First Order Vector Fields

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we introduce a computational method for proving the existence of generic saddle-to-saddle connections between equilibria of first order vector fields. The first step consists of rigorously computing high order parametrizations of the local stable and unstable manifolds. If the local manifolds intersect, the Newton–Kantorovich theorem is applied to validate the existence of a so-called short connecting orbit. If the local manifolds do not intersect, a boundary value problem with boundary values in the local manifolds is rigorously solved by a contraction mapping argument on a ball centered at the numerical solution, yielding the existence of a so-called long connecting orbit. In both cases our argument yields transversality of the corresponding intersection of the manifolds. The method is applied to the Lorenz equations, where a study of a pitchfork bifurcation with saddle-to-saddle stability is done and where several proofs of existence of short and long connections are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Complex analysis. An introduction to the theory of analytic functions of one complex variable. International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill Book Co., New York (1978)

  2. Arai, Z., Mischaikow, K.: Rigorous computations of homoclinic tangencies. SIAM J. Appl. Dyn. Syst. 5(2), 280–292 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. van den Berg, J.B., Lessard, J.P., Mischaikow, K., Mireles James, J.D.: Rigorous numerics for symmetric connecting orbits: even homoclinics of the Gray–Scott. SIAM J. Math. Anal. 43(4), 1557–1594 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beyn, W.J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10(3), 379–405 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. II. Regularity with respect to parameters. Indiana Univ. Math. J. 52(2), 329–360 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)

    Article  MATH  Google Scholar 

  8. Capinski, M.: Covering relations and the existence of topologically normally hyperbolic invariant sets. Discret. Contin. Dyn. Syst. 23(3), 705–725 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Conley, C.: Isolated invariant sets and the Morse index. CBMS Regional Conference Series in Mathematics, American Mathematical Society, vol. 38, iii+89 (1978)

  10. Coomes, B., Koçak, H., Palmer, K.: Homoclinic shadowing. J. Dyn. Differ. Equ. 17(1), 175–215 (2005)

    Article  MATH  Google Scholar 

  11. Coomes, B.A., Koçak, H., Palmer, K.J.: Transversal connecting orbits from shadowing. Numer. Math. 106(3), 427–469 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Day, S., Hiraoka, Y., Mischaikow, K., Ogawa, T.: Rigorous numerics for global dynamics: a study of the Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 4(1), 1–31 (2005). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  13. Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (2007). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  14. Doedel, E.J., Friedman, M.J.: Numerical computation of heteroclinic orbits, continuation techniques and bifurcation problems. J. Comput. Appl. Math. 26(1–2), 155–170 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Doedel, E.J., Friedman, M.J., Monteiro, A.C.: On locating connecting orbits. Appl. Math. Comput. 65(1–3), 231–239 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Doedel, E.J., Friedman, M.J., Kunin, B.I.: Successive continuation for locating connecting orbits. Numer. Algorithms 14(1–3), 103–124 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Friedman, M.J., Doedel, E.J.: Numerical computation and continuation of invariant manifolds connecting fixed points. SIAM J. Numer. Anal. 28(3), 789–808 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gidea, M., Zgliczyński, P.: Covering relations for multidimensional dynamical systems. J. Differ. Equ. 202(1), 59–80 (2004)

    Article  MATH  Google Scholar 

  19. Gidea, M., Zgliczyński, P.: Covering relations for multidimensional dynamical systems. II. J. Differ. Equ. 202(1), 59–80 (2004)

    Article  MATH  Google Scholar 

  20. Johnson, T., Tucker, W.: A note on the convergence of parametrised non-resonant invariant manifolds. Qual. Theory Dyn. Syst. 10(1), 107–121 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Knobloch, J., Rieß, T.: Lin’s method for heteroclinic chains involving periodic orbits. Nonlinearity 23(1), 23–54 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Koçak, H., Palmer, K., Coomes, B.: Shadowing in ordinary differential equations, Rendiconti del Seminario Matematico. Univ. Politec. Torino 65(1), 89–113 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Krauskopf, B., Rieß, T.: A Lin’s method approach to finding and continuing heteroclinic connections involving periodic orbits. Nonlinearity 21(8), 1655–1690 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lessard, J.P., Mireles James, J.D., Reinhardt, C.: CAPSad2SadLab: numerical implementation of computer assisted proof of saddle-to-saddle connecting orbits in IntLab (2012) http://www.math.rutgers.edu/jmireles/saddleToSaddlePage.html

  25. McCord, C., Mischaikow, K.: Connected simple systems, transition matrices, and heteroclinic bifurcations. Trans. Am. Math. Soc. 333(1), 397–422 (1992)

    MATH  MathSciNet  Google Scholar 

  26. Mireles-James, J.D., Mischaikow, K.: Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps. Submitted (2012)

  27. Mrozek, M., Żelawski, M.: Heteroclinic connections in the Kuramoto–Sivashinsky equation: a computer assisted proof. Reliab. Comput. 3(3), 277–285 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nakao, M.T.: Numerical verification methods for solutions of ordinary and partial differential equations. Numer. Funct. Anal. Optim. 22(3–4), 321–356 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Neumaier, A., Rage, T.: Rigorous chaos verification in discrete dynamical systems. Phys. D 67(4), 327–346 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Neimark, J.I., Silnikov, L.P.: A condition for the generation of periodic motions. Doklady Akademii Nauk SSSR 160, 1261–1264 (1965)

    MathSciNet  Google Scholar 

  31. Oishi, S.: Numerical verification method of existence of connecting orbits for continuous dynamical systems. J. Univ. Comput. Sci. 4(2), 193–201 (1998). (electronic)

    MATH  MathSciNet  Google Scholar 

  32. Ortega, J.M.: The Newton–Kantorovich Theorem. Am. Math. Monthly 75, 658–660 (1968)

    Article  MATH  Google Scholar 

  33. Palmer, K.J.: Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dynamics reporten. 1, 265–306, Dyn. Report. Ser. Dyn. Syst. Appl. 1, Wiley, Chichester, (1988)

  34. Rudin, W.: Functional analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc, New York (1991)

  35. Rump, S.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schultz, M.H.: Spline Analysis. Prentice Hall, Upper Saddle River (1973)

    MATH  Google Scholar 

  37. Smale, S.: Diffeomorphisms with many periodic points. Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 63–80. Princeton Univ. Press, Princeton (1965)

  38. Stoffer, D., Palmer, K.: Rigorous verification of chaotic behavior of maps using validated shadowing. Nonlinearity 12(6), 1683–1698 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wilczak, D.: Abundancs of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discret. Contin. Dyn. Syst. Ser. B 11(4), 1039–1055 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wilczak, D.: Symmetric heteroclinic connections in the Michelson system: a computer assisted proof. SIAM J. Appl. Dyn. Syst. 4(3), 489–514 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wilczak, D.: Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discret. Contin. Dyn. Syst. Ser. B 11(4), 1039–1055 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wilczak, D., Zgliczyński, P.: Heteroclinic connections between periodic orbits in planar restricted circular three body problem. II. Commun. Math. Phys. 259(3), 561–576 (2005)

    Article  MATH  Google Scholar 

  43. Yamamoto, N.: A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal. 35(5), 2004–2013 (1998). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zgliczyński, P.: Covering relations, cone conditions and the stable manifold theorem. J. Differ. Equ. 246(5), 1774–1819 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Reinhardt.

Appendices

Appendices

1.1 Appendix 1: Parameterization Method for Lorenz

Consider \(\dot{u} = g(u)\) given by the Lorenz equations (1.5). Let \(p\) denote one of the fixed points, \(\lambda _1\) and \(\lambda _2\) denote two eigenvalues of \(Dg(p)\) with similar stability (either both stable or both unstable), and \(a_1, a_2\) be two associated eigenvectors. In the above considered setting \(\lambda _{1} = \bar{\lambda }_{2}\) and \(a_{1,2}\) are complex eigenvectors. Let \(P\) denote the parameterization of the invariant manifold (whether stable or unstable) and \(\Lambda \in \mathbb {C}^{2,2}\) denote the matrix with \(\lambda _1\) and \(\lambda _2\) as diagonal entries. Then in this case the power series is

$$\begin{aligned} P(\theta ) = f(\theta _{1}+i\theta _{2},\theta _{1}-i\theta _{2})= \sum _{n_1=0}^{\infty } \sum _{n_2=0}^{\infty } p_{(n_1, n_2)} (\theta _1+i\theta _{2})^{n_1} (\theta _{1}-i\theta _2)^{n_2}, \end{aligned}$$

with \(p_{(n_1, n_2)} \in \mathbb {C}^3\) for each \(n_1, n_2 \ge 0\) and \(f(z) = f(z_{1},z_{2}):\mathbb {C}^{2}\rightarrow \mathbb {C}^{3}\). The linear constraints give that \(p_{(0,0)} = p\), \(p_{(0,1)} = a_1\), and \(p_{(1,0)} = a_2\). The coefficients for \(n_1 + n_2 \ge 2\) are worked out by considering the functional equation

$$\begin{aligned} \left[ \begin{array}{c} \sigma (f_2(z)-f_1(z)) \\ \rho f_1(z) - f_1(z) f_3(z) - f_2(z) \\ f_1(z)f_2(z) - \beta f_3(z) \end{array} \right] = \left[ \begin{array}{c} z_1 \lambda _1 \partial _{z_1} f_1(z) + z_2 \lambda _2 \partial _{z_2} f_1(z) \\ z_1 \lambda _1 \partial _{z_1} f_2(z) + z_2 \lambda _2 \partial _{z_2} f_2(z) \\ z_1 \lambda _1 \partial _{z_1} f_3(z) + z_2 \lambda _2 \partial _{z_2} f_3(z) \end{array} \right] . \end{aligned}$$

The right hand side expands as

$$\begin{aligned} \left[ \begin{array}{c} z_1 \lambda _1 \partial _{z_1} f_1(z) + z_2 \lambda _2 \partial _{z_2} f_1(z) \\ z_1 \lambda _1 \partial _{z_1} f_2(z) + z_2 \lambda _2 \partial _{z_2} f_2(z) \\ z_1 \lambda _1 \partial _{z_1} f_3(z) + z_2 \lambda _2 \partial _{z_2} f_3(z) \end{array} \right] = \sum _{n_1 = 0}^{\infty } \sum _{n_2 = 0}^{\infty } \left( n_1 \lambda _1 + n_2 \lambda _2 \right) \left[ \begin{array}{c} p_{(n_1, n_2)}^1 \\ p_{(n_1, n_2)}^2 \\ p_{(n_1, n_2)}^3 \end{array} \right] z_1^{n_1} z_2^{n_2}, \end{aligned}$$

while the left hand side is

$$\begin{aligned}&\left[ \begin{array}{c} \sigma (f_2(z)-f_1(z)) \\ \rho f_1(z) - f_1(z) f_3(z) - f_2(z) \\ f_1(z)f_2(z) - \beta f_3(z) \end{array} \right] \\&\quad =\sum _{n_1 = 0}^{\infty } \sum _{n_2 = 0}^{\infty } \left[ \begin{array}{c} \sigma \left( p_{(n_1, n_2)}^2-p_{(n_1, n_2)}^1 \right) \\ \rho \, p_{(n_1, n_2)}^1 - p_{(n_1, n_2)}^2 - \sum _{k=0}^{n_2} \sum _{j=0}^{n_1} p_{(n_1-j, n_2-k)}^1 p_{(j,k)}^3 \\ - \beta \, p_{(n_1, n_2)}^3 + \sum _{k=0}^{n_2} \sum _{j=0}^{n_1} p_{(n_1-j, n_2-k)}^1 p_{(j,k)}^2 \end{array} \right] z_1^{n_1} z_2^{n_2}. \end{aligned}$$

Matching like powers of \(z\) and solving for the higher order terms in terms of the lower order terms gives the homological equation

$$\begin{aligned}&\left( \begin{array}{c@{\quad }c@{\quad }c} \sigma - (n_1 \lambda _1 + n_2 \lambda _2) &{} \sigma &{} 0 \\ \rho - p_{(0,0)}^3 &{} -1 - (n_1 \lambda _1 + n_2 \lambda _2) &{} -p_{(0,0)}^1 \\ p_{(0,0)}^2 &{} p_{(0,0)}^1 &{}-\beta - (n_1 \lambda _1 + n_2 \lambda _2) \end{array} \right) \left[ \begin{array}{c} p_{(n_1, n_2)}^1 \\ p_{(n_1, n_2)}^2 \\ p_{(n_1, n_2)}^3 \end{array} \right] \\&\quad = \sum _{k=0}^{n_2} \sum _{j=0}^{n_1} \left[ \begin{array}{c} 0 \\ \bar{p}_{(n_1-j, n_2-k)}^1 \bar{p}_{(j,k)}^3 \\ -\bar{p}_{(n_1-j, n_2-k)}^1 \bar{p}_{(j,k)}^2 \end{array} \right] , \end{aligned}$$

where

$$\begin{aligned} \bar{p}_{(j,k)} = \left\{ \begin{array}{lll} 0 \,\,\,\,\,\,\,\,&{}\text{ if } \text{ either }&{} i=j=0 \,\,\,\,\, \text{ or } \,\,\,\,\, i=n_1, j= n_2 \\ p_{(i,j)} \,\,\,\,\,\,\,\,\,\, &{}\text{ otherwise }.&{} \end{array} \right. \end{aligned}$$

The homological equation has the form

$$\begin{aligned} \left[ \, Dg(p) - (n_1 \lambda _1 + n_2 \lambda _2) I \, \right] p_{(n_1, n_2)} = s_{(n_1, n_2)}, \end{aligned}$$

with \(s\) depending only on lower order terms. Moreover the matrix is a characteristic matrix for \(Dg(p)\) and is invertible as long as \(n_2 \lambda _1 + n_2 \lambda _2 \ne \lambda _{\ell }\) for any \(n_1 + n_2 \ge 2\) and either of \(\ell = 1,2\). When \(\lambda _{1,2}\) are a complex conjugate pair this non-resonance condition holds for all \(n_1 + n_2 \ge 2\). If \(\lambda _{1,2}\) were real distinct and \(\lambda _1 < \lambda _2\) then if \( n_2 \lambda _2 < \lambda _1, \) it follows that \( n_1 \lambda _1 + n_2 \lambda _2 < \lambda _{\ell }\), \(\ell = 1,2\). So there are no resonances for any multi-index \((n_1, n_2)\) with \(n_1+n_2 \ge \lambda _1/\lambda _2\). Once we check that there are no resonances for multi-indices smaller than this then we rule out resonances to all orders.

1.2 Appendix 2: Radii Polynomial Estimates and Formulas for Lorenz

First notice that

$$\begin{aligned} Dg(x,y,z) = \begin{pmatrix} -\sigma &{}\quad \sigma &{}\quad 0\\ \rho -z &{}\quad -1 &{}\quad -x\\ y &{}\quad x &{}\quad -\beta \end{pmatrix}. \end{aligned}$$
(7.1)

Let us start with the computation of the vector functions \(v_{d}(u^*_{h},\tilde{u}_{1},\tilde{u}_{2})\) \((d=1,\ldots , D)\) defined in (5.8). Recall that we seek an expression of the form

$$\begin{aligned} Dg(u^*_{h}(s)+r\tilde{u}_{1}(s))\tilde{u}_{2}(s)-Dg(u^*_{h}(s))(\Pi _{h})^{n}\tilde{u}_{2}(s) = \sum _{d = 1}^{D}v_{d}r^{d-1}. \end{aligned}$$

Let \(x_{i} = (\theta _{i},\alpha _{i},u_{i}) = r\tilde{x}_{i}\) ,\(\tilde{x}_{i}\in B(1,\omega )\), \(i=1,2\) as defined in (3.5). This in particular implies that

$$\begin{aligned} \begin{aligned} \Vert \tilde{u}_{i}\Vert _{C_{0}}&\le 1+\omega \\ \Vert \tilde{u}_{i}-(\Pi _{h})^{3}\tilde{u}_{i}\Vert _{C_{0}}&\le \omega \end{aligned} \end{aligned}$$
(7.2)

Denoting \(u^*_{h} = ([u^*_{h}]_{1},[u^*_{h}]_{2},[u^*_{h}]_{3})\), \(\tilde{u}_{i} = ([\tilde{u}_{i}]_{1},[\tilde{u}_{i}]_{2},[\tilde{u}_{i}]_{3})\) \((i=1,2)\) and applying (7.1) we can write (5.8) as follows.

$$\begin{aligned} \begin{aligned}&Dg(u^*_{h}(s)+r\tilde{u}_{1}(s))\tilde{u}_{2}(s)-Dg(u^*_{h}(s))(\Pi _{h})^{3}\tilde{u}_{2}(s)\\&\quad = \begin{pmatrix} -\sigma ([\tilde{u}_{2}]_{1}-\Pi _{h}[\tilde{u}_{2}]_{1})+\sigma ([\tilde{u}_{2}]_{2}-\Pi _{h}[\tilde{u}_{2}]_{2})\\ \rho ([\tilde{u}_{2}]_{1}-\Pi _{h}[\tilde{u}_{2}]_{1})-[u^*_{h}]_{3}([\tilde{u}_{2}]_{1}-\Pi _{h}[\tilde{u}_{2}]_{1})-([\tilde{u}_{2}]_{2}\\ -\Pi _{h}[\tilde{u}_{2}]_{2})-[u^*_{h}]_{1}([\tilde{u}_{2}]_{3}-\Pi _{h}[\tilde{x}_{2}]_{3})\\ [u^*_{h}]_{2}([\tilde{u}_{2}]_{1}-\Pi _{h}[\tilde{u}_{2}]_{1})+[u^*_{h}]_{1}([\tilde{u}_{2}]_{2}-\Pi _{h}[\tilde{u}_{2}]_{2})-\beta ([\tilde{u}_{2}]_{3}-\Pi _{h}[\tilde{u}_{2}]_{3}) \end{pmatrix}\\&\qquad +r\begin{pmatrix} 0\\ [\tilde{u}_{1}]_{3}[\tilde{u}_{2}]_{1}-[\tilde{u}_{1}]_{1}[\tilde{u}_{2}]_{3}\\ 2[\tilde{u}_{1}]_{2}[\tilde{u}_{2}]_{1} \end{pmatrix}\\&\quad :=v_{1}(u^*_{h},\tilde{u}_{1},\tilde{u}_{2})+rv_{2}(u^*_{h},\tilde{u}_{1},\tilde{u}_{2}). \end{aligned} \end{aligned}$$

In particular \(D=2\) in this case. Now using (7.2) we can compute \(\Gamma _{1,2}\in \mathbb {R}^{3}\) by applying the following estimates on the subintervals. For \(i=1,\ldots ,m\)

$$\begin{aligned}&\int \limits _{t_{i-1}}^{t_{i}} |v_{1}(u^*_{h}(s),\tilde{u}_{1}(s),\tilde{u}_{2}(s))|ds\nonumber \\&\quad \le \begin{pmatrix} 2|\sigma |\\ \max _{t\in [t_{i-1},t_{i}]}\{|\rho -[u^*_{h}]_{3}(t)|+1+|[u^*_{h}]_{1}(t)|\}\\ \max _{t\in [t_{i-1},t_{i}]}\{|[u^*_{h}]_{2}(t)|+|[\hat{x}_{h}]_{1}(t)|+|\beta |\} \end{pmatrix}\omega (t_{i}-t_{i-1}) \end{aligned}$$
(7.3)

where the absolute value is to be understood component-wise. Similarly

$$\begin{aligned} \begin{aligned} \int \limits _{t_{i-1}}^{t_{i}} |v_{2}(u^*_{h}(s),\tilde{u}_{1}(s),\tilde{u}_{2}(s))|ds\le \begin{pmatrix} 0\\ 2\\ 2 \end{pmatrix}(t_{i}-t_{i-1})(1+\omega )^{2} \end{aligned}. \end{aligned}$$
(7.4)

Splitting the integral from 0 to 1 into the sum of the integrals over the subintervals \([t_{i-1},t_{i}]\) \((i=1,\ldots ,m)\) we can use (7.3) and (7.4) to compute \(\Gamma _{1,2}\). More explicitely

$$\begin{aligned} \Gamma _{1} = \omega \sum _{i=1}^{m}\begin{pmatrix} 2|\sigma |\\ \max _{t\in [t_{i-1},t_{i}]}\{|\rho -[u^*_{h}]_{3}(t)|+1+|[u^*_{h}]_{1}(t)|\}\\ \max _{t\in [t_{i-1},t_{i}]}\{|[u^*_{h}]_{2}(t)|+|[u^*_{h}]_{1}(t)|+|\beta |\} \end{pmatrix} \end{aligned}$$

and

$$\begin{aligned} \Gamma _{2} = (1+\omega )^{2}\begin{pmatrix} 0\\ 2\\ 2 \end{pmatrix}. \end{aligned}$$

By a similar reasoning we can compute \(\Gamma _{1,2}^{i}\in \mathbb {R}^{m+1}\) for \(i=1,2,3\). The bounds \(\Lambda _{s,u}\) were derived in general in (5.6) and (5.7). Therefore we have all the ingredients to compute the bounds \(Z_{l}(r)\) \((l=1,\ldots ,3(m+2))\).

We continue to derive explicit expressions for \(Y_{\infty }\) and \(Z_{\infty }(r)\). Recall that

$$\begin{aligned} (u^*_{h})'(t)|_{(t_{i-1},t_{i})} = \frac{1}{t_{i}-t_{i-1}}\Delta u^*_{i}, \end{aligned}$$

where \(u^*_{i} = u^*_{h}(t_{i})\) for \(i=0,\ldots ,m\) and \(\Delta u^*_{i} = u^*_{i}-u^*_{i-1}\).

\(\underline{Y_{\infty }}\): Let \(i = 1,\ldots ,m\):

$$\begin{aligned} \begin{aligned} \!Dg(u^*_{h})(u^*_{h})'|_{(t_{i-1},t_{i})}&= \frac{1}{t_{i}-t_{i-1}}\!\begin{pmatrix} -\sigma &{} \sigma &{} 0\\ \rho -[u^*_{h}]_{3}|_{(t_{i-1},t_{i})} &{} -1 &{}\quad -[u^*_{h}]_{1}|_{(t_{i-1},t_{i})}\\ [u^*_{h}]_{2}|_{(t_{i-1},t_{i})} &{}\quad [u^*_{h}]_{1}|_{(t_{i-1},t_{i})} &{} -\beta \end{pmatrix}\! \Delta u^*_{i}. \end{aligned} \end{aligned}$$

Hence we obtain:

$$\begin{aligned} \begin{aligned} \left| \frac{d^{2}}{dt^{2}}h^{1}(t)|_{(t_{i-1},t_{i})}\right|&\le \frac{L}{t_{i}-t_{i-1}}\sigma \left| \Delta [u^*_{i}]_{2}-\Delta [u^*_{i}]_{1}\right| \\ \left| \frac{d^{2}}{dt^{2}}h^{2}(t)|_{(t_{i-1},t_{i})}\right|&\!\le \! \frac{L}{t_{i}\!-\!t_{i-1}}\left| (\rho -[u^*_{h}]_{3}\right| _{(t_{i-1},t_{i})})\Delta [u^*_{i}]_{1}\!-\!\Delta [u^*_{i}]_{2}-[u^*_{h}]_{1}\left| _{(t_{i-1},t_{i})}\Delta [u^*_{i}]_{3}\right| \\ \left| \frac{d^{2}}{dt^{2}}h^{3}(t)|_{(t_{i-1},t_{i})}\right|&\le \frac{L}{t_{i}-t_{i-1}}|[u^*_{h}]_{2}|_{(t_{i-1},t_{i})} \Delta [u^*_{i}]_{1}+ [u^*_{h}]_{1}\left| _{(t_{i-1},t_{i})}\Delta [u^*_{i}]_{2} -\beta \Delta [u^*_{i}]_{3}\right| . \end{aligned} \end{aligned}$$

Using interval arithmetic we are able to evaluate \([u^*_{h}]_{i}|_{(t_{i-1},t_{i})}\) for \(i=1,2,3\) and finalize the computations for \(Y_{\infty }\) using Lemma 5.

\(\underline{Z_{\infty }}\): Using (7.1) one obtains after computing

$$\begin{aligned}&Dg(u^*_{h}+r\tilde{u}_{1})\tilde{u}_{2} \nonumber \\&\quad = \begin{pmatrix} -\sigma [\tilde{u}_{2}]_{1}+\sigma [\tilde{u}_{2}]_{1}\\ \rho [\tilde{u}_{2}]_{2}-[u^*_{h}]_{3}[\tilde{u}_{2}]_{1}-r[\tilde{u}_{1}]_{3}[\tilde{u}_{2}]_{1}-[\tilde{x}_{2}]_{2}-[u^*_{h}]_{1}[\tilde{u}_{2}]_|{3}-r[\tilde{x}_{1}]_{1}[\tilde{u}_{2}]_{3}\\ [u^*_{h}]_{2}[\tilde{x}_{2}]_{1}+r[\tilde{x}_{1}]_{2}[\tilde{u}_{2}]_{1}+[u^*_{h}]_{1}[\tilde{u}_{2}]_{2}+r[\tilde{x}_{1}]_{2}[\tilde{u}_{2}]_{2}-\beta [\tilde{u}_{2}]_{3} \end{pmatrix} \end{aligned}$$

that

$$\begin{aligned} \begin{aligned} |Dg^{1}(u^*_{h}+r\tilde{u}_{1})\tilde{u}_{2}|&\le 2\sigma (1+\omega )\\ |Dg^{2}(u^*_{h}+r\tilde{u}_{1})\tilde{u}_{2}|&\le (\rho +1+|[u^*_{h}]_{3}|+|[u^*_{h}]_{1}|+2r)(1+\omega )^2\\ |Dg^{3}(u^*_{h}+r\tilde{u}_{1})\tilde{u}_{2}|&\le (\beta +|[u^*_{h}]_{2}|+|[\hat{x}_{h}]_{1}|+2r)(1+\omega )^2. \end{aligned} \end{aligned}$$

Using Lemma 6 by evaluating the above bounds with interval arithmetic on the subintervals \((t_{i-1},t_{i})\) \((i=1,\ldots ,m)\) we can use this finalize the computation of \(Z_{\infty }(r)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lessard, JP., Mireles James, J.D. & Reinhardt, C. Computer Assisted Proof of Transverse Saddle-to-Saddle Connecting Orbits for First Order Vector Fields. J Dyn Diff Equat 26, 267–313 (2014). https://doi.org/10.1007/s10884-014-9367-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9367-0

Keywords

Navigation