Skip to main content
Log in

Dirichlet Problem of a Delayed Reaction–Diffusion Equation on a Semi-infinite Interval

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider a nonlocal delayed reaction–diffusion equation in a semi-infinite interval that describes mature population of a single species with two age stages (immature and mature) and a fixed maturation period living in a spatially semi-infinite environment. Homogeneous Dirichlet condition is imposed at the finite end, accounting for a scenario that boundary is hostile to the species. Due to the lack of compactness and symmetry of the spatial domain, the global dynamics of the equation turns out to be a very challenging problem. We first establish a priori estimate for nontrivial solutions after exploring the delicate asymptotic properties of the nonlocal delayed effect and the diffusion operator. Using the estimate, we are able to show the repellency of the trivial equilibrium and the existence of a positive heterogeneous steady state under the Dirichlet boundary condition. We then employ the dynamical system arguments to establish the global attractivity of the heterogeneous steady state. As a byproduct, we also obtain the existence and global attractivity of the heterogeneous steady state for the bistable evolution equation in the whole space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, vol. 446, pp. 5–49. Springer, Berlin (1975)

  2. Cooke, K.L., Huang, W.: Dynamics and global stability for a class of population models with delay and diffusion effects. In: CDSNS, pp. 92–76 (1992)

  3. Daners, D., Koch Medina, P.: Abstract evolution equations, periodic problems and applications. Pitman Research Notes in Mathematics Series, vol. 279. Longman Scientific & Technical, Harlow (1992)

  4. Fang, J., Zhao, X.-Q.: Existence and uniqueness of traveling waves for non-monotone integral equations with applications. J. Differ. Equ. 248, 2199–2226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faria, T., Huang, W., Wu, J.: Travelling waves for delayed reaction–diffusion equations with global response. Proc. R Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462, 229–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Faria, T., Trofimchuk, S.: Nonmonotone travelling waves in a single species reaction–diffusion equation with delay. J. Differ. Equ. 228, 357–376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friesecke, G.: Convergence to equilibrium for delay-diffusion equations with small delay. J. Dynam. Differ. Equ. 5, 89–103 (1993)

    Article  MathSciNet  Google Scholar 

  8. Gourley, S.A., Ruan, S.: Dynamics of the diffusive Nicholson’s blowflies equation with distributed delay. Proc. R Soc. Edinb. Sect. A 130, 1275–1291 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gourley, S., So, J.W.-H., Wu, J.: Non-locality of reaction–diffusion equations induced by delay: biological modeling and nonlinear dynamics. In: Anosov, D.V., Skubachevskii, A. (eds.) Contemporary Mathematics, Thematic Surveys. Kluwer Plenum, Dordrecht (2004); (English version is published in J. Math. Sci. 124, 5119–5153 (2004))

  10. Gourley, S.A., Wu, J.: Delayed non-local diffusive systems in biological invasion and disease spread. In: Brunner, H., Zhao, X.-Q., Zou, X. (eds.) Nonlinear Dynamics and Evolution Equations, pp. 137–200. American Mathematical Society, Providence, RI (2006)

    Chapter  Google Scholar 

  11. Haberman, R.: Applied Partial Differential Equations with Fourier Series and Boundary Value Problems. Pearson Education, New Jersey (2004)

    Google Scholar 

  12. Huang, W.: Global dynamics for a reaction–diffusion equation with time delay. J. Differ. Equ. 143, 293–326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kyrychko, Y., Gourley, S.A., Bartuccelli, M.V.: Comparison and convergence to equilibrium in a nonlocal delayed reaction–diffusion model on an infinite domain. Discrete Contin. Dyn. Syst. Ser. B 5, 1015–1026 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang, D., So, J., Zhang, F., Zou, X.: Population dynamic models with nonlocal delay on bounded domains and their numerical computations. Differ. Equ. Dyn. Syst. 11, 117–139 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Ma, S.: Traveling waves for non-local delayed diffusion equations via auxiliary equations. J. Differ. Equ. 237, 259–277 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martin, R.H., Smith, H.L.: Abstract functional–differential equations and reaction–diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Martin, R.H., Smith, H.L.: Reaction-diffusion systems with time delays: monotonicity, invariance, comparison and convergence. J. Reine Angew. Math. 413, 1–35 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Mei, M., So, J.W.-H., Li, M.Y., Shen, S.S.P.: Asymptotic stability of travelling waves for Nicholson’s blowflies equation with diffusion. Proc. R Soc. Edinb. Sect. A 134, 579–594 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Metz, J.A.J., Diekmann, O.: Age. In: Metz, J.A.J., Diekmann, O. (eds.) The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68, pp. 136–184. Springer-Verlag, Berlin (1986)

  20. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence, RI (1995)

    Google Scholar 

  21. So, J.W.-H., Wu, J., Zou, X.: A reaction–diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains. R Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, 1841–1853 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. So, J.W.-H., Yang, Y.: Dirichlet problem for the diffusive Nicholson’s blowflies equation. J. Differ. Equ. 150, 317–348 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. So, J.W.-H., Zou, X.: Traveling waves for the diffusive Nicholson’s blowflies equation. Appl. Math. Comput. 122(3), 385–392 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Travis, C.C., Webb, G.F.: Existence and stability for partial functional differential equations. Trans. Am. Math. Soc. 200, 395–418 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Z., Li, W., Ruan, S.: Entire solutions in bistable reaction–diffusion equations with nonlocal delayed nonlinearity. Trans. Am. Math. Soc. 361, 2047–2084 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, J.: Theory and Applications of Partial Functional–Differential Equations. Applied Mathematical Sciences, vol. 119. Springer-Verlag, New York (1996)

    Book  MATH  Google Scholar 

  27. Wu, J., Zou, X.: Traveling wave fronts of reaction–diffusion systems with delay. J. Dynam. Differ. Equ. 13, 651–687 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, J., Zhao, X.-Q.: Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations. J. Differ. Equ. 186, 470–484 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, D., Zhao, X.: A nonlocal reaction–diffusion population model with stage structure. Can. Appl. Math. Q. 11, 303–319 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Yamada, Y.: Asymptotic behavior of solutions for semilinear Volterra diffusion equations. Nonlinear Anal. 21, 227–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, Y., So, J.W.-H.: Dynamics for the diffusive Nicholson’s blowflies equation. Discrete Contin. Dyn. Syst. 2, 333–352 (1998)

    MathSciNet  Google Scholar 

  32. Yi, T., Chen, Y., Wu, J.: Threshold dynamics of a delayed reaction diffusion equation subject to the Dirichlet condition. J. Biol. Dyn. 3, 331–341 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yi, T., Chen, Y., Wu, J.: The global asymptotic behavior of nonlocal delay reaction diffusion equation with unbounded domain. Z. Angew. Math. Phys 2012(63), 793–812 (2012)

    Article  MathSciNet  Google Scholar 

  34. Yi, T., Chen, Y., Wu, J.: Unimodal dynamical systems: comparison principles, spreading speeds and travelling waves. J. Differ. Equ. 245, 3376–3388 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yi, T., Zou, X.: Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: a non-monotone case. J. Differ. Equ. 245, 3376–3388 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yi, T., Zou, X.: Map dynamics versus dynamics of associated delay reaction–diffusion equations with a Neumann condition. Proc. R Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466, 2955–2973 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yi, T., Zou, X.: Global dynamics of a delay differential equation with spatial non-locality in an unbounded domain. J. Differ. Eqn. 251, 2598–2611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yi, T., Zou, X.: On Dirichlet problem for a class of delayed reaction–diffusion equations with spatial non-locality. J. Dynam. Differ. Equ. 25, 959–979 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Research was supported partially by the National Natural Science Foundation of P. R. China (Grant No. 11171098) and the Hunan Provincial NSF (Grant No. 11JJ1001), and by NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Zou.

Additional information

Dedicated to Professor John Mallet-Paret on the occasion of his 60th birthday.

Appendix: Derivation of Eq. (1.3)

Appendix: Derivation of Eq. (1.3)

Consider a species living in the semi-infinite interval \({\mathbb {R}}_+=[0, \infty )\). Let \(W(t,a,x)\) be the population density (w.r.t. age \(a\)) of the species at time \(t\ge 0\), age \(a\ge 0\) and location \(x \ge 0\), and \(D(a)\) and \(d(a)\) be the diffusion rate and death rate, respectively, at age \(a\). Then by Metz-Diekmann [19], \(W(t,a,x)\) satisfies the following evolution equation

$$\begin{aligned} \frac{\partial W}{\partial t}+\frac{\partial W}{\partial a}=D(a)\frac{\partial ^2 W}{\partial x^2}-d(a)W,\quad t> 0,\quad a >0,\quad x \in (0, \infty ). \end{aligned}$$
(5.1)

In this paper, we consider the homogeneous Dirichlet boundary condition at \(x=0\)

$$\begin{aligned} W(t,a,0) = 0, \quad (t,a)\in {\mathbb {R}}_+^2, \end{aligned}$$
(5.2)

which accounts for the scenario that the location \(x=0\) is hostile to the species. Assume that the species has a fixed maturation time \(\tau >0\). Then, the total mature population is given by

$$\begin{aligned} w(t,x)=\int _{\tau }^\infty W(t,a,x)\mathrm {d}a. \end{aligned}$$
(5.3)

By the biological meaning of \(W(t,a,x)\), one should have the following conditions with respect to the age variable \(a\):

$$\begin{aligned} \left\{ \begin{array}{ll} W(t,\infty ,x) &{}= 0, \\ W(t,0,x)&{}=b(w(t,x)) \end{array} \right. \qquad (t,x)\in {\mathbb {R}}_+^2, \end{aligned}$$
(5.4)

where \(b\) is the birth function.

Differentiating (5.3), making use of (5.4), yields

$$\begin{aligned} \frac{\partial w}{\partial t}=W(t,\tau ,x) +D_m \frac{\partial ^2 w}{\partial x^2}-d_m w, \quad t >0,\quad x \in (0, \infty ) \end{aligned}$$
(5.5)

Here, for simplicity of presentation, we have assumed that the diffusion and death rates for the mature population are age independent, that is, \(D(a)=D_m\) and \(d(a)=d_m\) for \(a \in [\tau , \infty )\). We need to determine \(W(t,\tau ,x)\) in terms of \(w(t,x)\). To this end, for any \(s \in {\mathbb {R}}_+\), let \(V^s(t,x)=W(t,t-s,x)\) for \((t,x)\in [s,s+\tau ] \times {\mathbb {R}}_+\). Then by (5.1), (5.2) and (5.4), we have

$$\begin{aligned} \left\{ \begin{array}{lll} \frac{\partial V^s}{\partial t}(t,x) &{} = &{} D(t-s)\frac{\partial ^2 V^s}{\partial x^2}(t,x)-d(t-s)V^s(t,x), \quad (t,x)\in (s,s+\tau ]\times (0,\infty ), \\ V^s(t,0) &{} = &{} 0, \quad t\in [s,s+\tau ], \\ \ V^s(s,x) &{} = &{} b(w(s,x)), \quad x\in {\mathbb {R}}_+. \end{array} \right. \end{aligned}$$
(5.6)

Applying the Fourier sine transform (see, e.g., [11], pp. 471–473]) to (5.6), we have

$$\begin{aligned} \left\{ \begin{array}{lll} \frac{d \hat{V}^s(t,\xi )}{d t}&{}=&{} -[D(t-s)\xi ^2+d(t-s)] \hat{V}^s(t,\xi ), \quad (t,\xi )\in (s,s+\tau ]\times (0,\infty ), \\ \hat{V}^s (s,\xi ) &{} = &{} c(s,\xi ), \quad \xi \in {\mathbb {R}}_+, \end{array} \right. \end{aligned}$$
(5.7)

where \( \text{ for } \text{ all } (t,\xi )\in (s,s+\tau ]\times [0,\infty )\),

$$\begin{aligned} \hat{V}^s(t,\xi )=\frac{2}{\pi }\int _0^{\infty } V^s(t,x)sin(\xi x) \mathrm {d} x \end{aligned}$$

and

$$\begin{aligned} c(s,\xi )=\frac{2}{\pi }\int _0^{\infty } b(w(s,x))sin(\xi x) \mathrm {d} x. \end{aligned}$$

Solving (5.7) leads to

$$\begin{aligned} \begin{array}{rcl} \hat{V}^s(t,\xi )= & {} c(s,\xi )e^{-\int _s^t[D(t-s)\xi ^2+d(t-s)] \mathrm {d} t}. \end{array}. \end{aligned}$$

Hence,

$$\begin{aligned} \begin{array}{rcl} \hat{V}^{t-\tau } (t,\xi )= & {} \varepsilon \cdot c(t-\tau ,\xi ) \cdot e^{-\alpha \xi ^2}. \end{array} \end{aligned}$$
(5.8)

where \(\varepsilon = \exp (-\int _0^\tau d(s) \mathrm {d}s)\) and \(\alpha =\int _0^\tau D(s) \mathrm {d}s\). Taking the inverse Fourier sine transform in (5.8) gives

$$\begin{aligned} V^{t-\tau } (t,x)= \int _0^{\infty } \varepsilon \cdot c(t-\tau ,\xi ) \cdot e^{-\alpha \xi ^2} \sin (x \xi ) \mathrm {d} \xi . \end{aligned}$$

In order to obtain a concrete formula for \(V^{t-\tau } (t,x)\), one only needs to follow (almost repeat) the steps on P477 in [11] for deriving the formula Eq. (10.5.39) (involving an odd extension of \(b(w(s,x))\) from \([0, \infty )\) to the whole space \((-\infty , \infty )\), formulas of Fourier transforms of Gaussian functions, and the Convolution Theorem), and this will lead to

$$\begin{aligned} \begin{aligned} V^{t-\tau } (t,x)&=\frac{\varepsilon }{\sqrt{4 \pi \alpha }} \int _0^\infty b(w(t-\tau ,y))\left[ \exp \left( -\frac{(x-y)^2}{4\alpha }\right) -\exp \left( -\frac{(x+y)^2}{4\alpha }\right) \right] \mathrm {d}y \\&= \varepsilon \int _0^{\infty } b(w(t-\tau , y) [\Gamma _{\alpha }(x-y) - \Gamma _{\alpha }(x+y)] \mathrm {d}y. \end{aligned} \end{aligned}$$
(5.9)

Note that \( W(t, \tau , x)=V^{t-\tau } (t,x)\). Plugging (5.9) into (5.5) gives the PDE in (1.3), where we have used \(D_I(a)\) and \(d_I(a)\) to denote the diffusion and death rates of the immature respectively, that is, \(D_I=D|_{[0,\tau ]}\) and \(d_I=d|_{[0,\tau ]}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, T., Zou, X. Dirichlet Problem of a Delayed Reaction–Diffusion Equation on a Semi-infinite Interval. J Dyn Diff Equat 28, 1007–1030 (2016). https://doi.org/10.1007/s10884-015-9457-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9457-7

Keywords

Mathematics Subject Classification

Navigation