Skip to main content
Log in

Roquefortine/Oxaline Biosynthesis Pathway Metabolites in Penicillium ser. Corymbifera: In Planta Production and Implications for Competitive Fitness

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Three strains of each of the seven taxa comprising the Penicillium series Corymbifera were surveyed by direct injection mass spectrometry (MS) and liquid chromatography–MS for the production of terrestric acid and roquefortine/oxaline biosynthesis pathway metabolites when cultured upon macerated tissue agars prepared from Allium cepa, Zingiber officinale, and Tulipa gesneriana, and on the defined medium Czapek yeast autolysate agar (CYA). A novel solid-phase extraction methodology was applied for the rapid purification of roquefortine metabolites from a complex matrix. Penicillium hordei and P. venetum produced roquefortine D and C, whereas P. hirsutum produced roquefortine D and C and glandicolines A and B. P. albocoremium, P. allii, and P. radicicola carried the pathway through to meleagrin, producing roquefortine D and C, glandicolines A and B, and meleagrin. P. tulipae produced all previously mentioned metabolites yet carried the pathway through to an end product recognized as epi-neoxaline, prompting the proposal of a roquefortine/epi-neoxaline biogenesis pathway. Terrestric acid production was stimulated by all Corymbifera strains on plant-derived media compared to CYA controls. In planta, production of terrestric acid, roquefortine C, glandicolines A and B, meleagrin, epi-neoxaline, and several other species-related secondary metabolites were confirmed from A. cepa bulbs infected with Corymbifera strains. The deposition of roquefortine/oxaline pathway metabolites as an extracellular nitrogen reserve for uptake and metabolism into growing mycelia and the synergistic role of terrestric acid and other Corymbifera secondary metabolites in enhancing the competitive fitness of Corymbifera species in planta are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • P. Bertolini S. P. Tian (1996) ArticleTitleLow-temperature biology and pathogenicity of Penicillium hirsutum on garlic in storage Postharvest Biol. Technol. 7 83–89 Occurrence Handle10.1016/0925-5214(95)00025-9

    Article  Google Scholar 

  • D. M. Boichenko N. F. Zelenkova N. G. Vinokurova B. P. Baskunov (2002) ArticleTitleFactors contributing to roquefortine yield variability during cultivation of Penicillium roquefortii Appl. Biochem. Microbiol. 38 32–35 Occurrence Handle10.1023/A:1013244420167

    Article  Google Scholar 

  • A. Bracken A. Pocker H. Raistrick (1954) ArticleTitleStudies in the biochemistry of micro-organisms. Cyclopenin, a nitrogen-containing metabolic product of Penicillium cyclopium Westling Biochem. J. 57 587–595 Occurrence Handle13198807

    PubMed  Google Scholar 

  • Brown, A. G., Smale, T. C., King, T. J., and Hasenkamp, R. 1976. Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J. Chem. Soc., Perkin I 1165–1170.

  • T. H. Chen M. S. Shioa W. L. Hsieh (1987) ArticleTitleInhibition of somatic embryogenesis in cultured carrot cells by mevinolin Bot. Bull. Acad. Sin. 28 211–217

    Google Scholar 

  • O. Filtenborg J. C. Frisvad U. Thrane (1996) ArticleTitleMoulds in food spoilage Int. J. Food Microbiol. 33 85–102 Occurrence Handle10.1016/0168-1605(96)01153-1 Occurrence Handle8913811

    Article  PubMed  Google Scholar 

  • J. C. Frisvad O. Filtenborg (1989) ArticleTitleTerverticillate Penicillia: chemotaxonomy and mycotoxin production Mycologia 81 837–861

    Google Scholar 

  • J. C. Frisvad R. A. Samson (2004) ArticleTitlePolyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins Stud. Mycol. 49 1–173

    Google Scholar 

  • W. L. Huang K. R. Lee M. S. Shiao (1999) ArticleTitleInhibition of trichothecin and ergosterol biosynthesis in Trichothecium roseum by lovastatin J. Chin. Chem. Soc. 46 687–692

    Google Scholar 

  • H. Jayasuriya R. G. Ball D. I. Zink J. L. Smith M. A. Goetz R. G. Jenkins M. Nallin-Omstead K. C. Silverman G. F. Bills R. B. Lingham S. B. Singh (1995) ArticleTitleBarceloneic acid A, a new farnesyl–protein transferase inhibitor from a Phoma species J. Nat. Prod. 58 986–991 Occurrence Handle10.1021/np50121a002 Occurrence Handle7561907

    Article  PubMed  Google Scholar 

  • K. Kawai K. Nozawa S. Nakajima Y. Iitaka (1984) ArticleTitleStudies of fungal products. VII The structures of meleagrin and 9-O-p-bromobenzoylmeleagrin Chem. Pharm. Bull. 32 94–98

    Google Scholar 

  • B. Kopp H. J. Rehm (1979) ArticleTitleAntimicrobial action of roquefortine Eur. J. Appl. Microbiol. Biotechnol. 6 397–401 Occurrence Handle10.1007/BF00499170

    Article  Google Scholar 

  • A. G. Kozlovsky N. G. Vinokurova T. A. Reshetilova V. G. Sakharovsky B. P. Baskunov S. G. Seleznev (1994) ArticleTitleNew metabolites of Penicillium glandicola var. glandicola—glandicoline A and glandicoline B Appl. Biochem. Microbiol. 30 334–337

    Google Scholar 

  • A. G. Kozlovsky N. G. Vinokurova T. F. Solovyeva I. G. Buzilova (1996) ArticleTitleMicrofungal nitrogen-containing secondary metabolites Appl. Biochem. Microbiol. 32 39–48

    Google Scholar 

  • T. V. Kulakovskaya T. A. Reshetilova T. N. Kuvichkina N. G. Vinokurova (1997) ArticleTitleRoquefortine excretion and up take by Penicillium crustosum Thom VKM F-1746 Process Biochem. 32 29–33 Occurrence Handle10.1016/S0032-9592(96)00041-6

    Article  Google Scholar 

  • A. T. Mankarios M. A. Hall M. C. Jarvis D. R. Threlfall J. Friend (1980) ArticleTitleCell wall polysaccharides from onions Phytochemistry 19 1731–1733 Occurrence Handle10.1016/S0031-9422(00)83803-0

    Article  Google Scholar 

  • T. A. Morehead B. J. Biermann D. N. Crowell S. K. Randall (1995) ArticleTitleChanges in protein ioprenylation during the growth of suspension-cultured tobacco cells Plant Physiol. 109 277–284 Occurrence Handle12228594

    PubMed  Google Scholar 

  • D. W. Nagel K. G. R. Pachler P. S. Steyn (1976) ArticleTitleThe chemistry and C NMR assignments of oxaline, a novel alkaloid from Penicillium oxalicum Tetrahedron 32 2625–2631 Occurrence Handle10.1016/0040-4020(76)88040-4

    Article  Google Scholar 

  • K. F. Nielsen J. Smedsgaard (2003) ArticleTitleFungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology J. Chromatogr., A 1002 111–136

    Google Scholar 

  • S. Ohmomo T. Ohashi M. Abe (1979) ArticleTitleOn the mechanism of the formation of indole alkaloids in Penicillium roqueforti Agric. Biol. Chem. 43 2035–2038

    Google Scholar 

  • S. Omura J. Inokoshi R. Uchida K. Shiomi R. Masuma T. Kawakubo H. Tanaka Y. Iwai S. Kosemura S. Yamamura (1996) ArticleTitleAndrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929 I. Producing strain, fermentation, isolation and biological activities J. Antibiot. 49 414–417 Occurrence Handle8682716

    PubMed  Google Scholar 

  • D. P. Overy J. W. Blunt (2004) ArticleTitleCorymbiferan lactones from Penicillium hordei: stimulation of novel phenolic metabolites using plant tissue media J. Nat. Prod. 67 1850–1853 Occurrence Handle10.1021/np049723c Occurrence Handle15568774

    Article  PubMed  Google Scholar 

  • D. P. Overy J. C. Frisvad (2003) ArticleTitleNew Penicillium species associated with bulbs and root vegetables Syst. Appl. Microbiol. 26 631–639 Occurrence Handle10.1078/072320203770865945 Occurrence Handle14666992

    Article  PubMed  Google Scholar 

  • D. P. Overy J. C. Frisvad U. Steinmeier U. Thrane (2005a) ArticleTitleClarification of the agents causing blue mold storage rot up on various flower and vegetable bulbs: implications for mycotoxin contamination Postharvest Biol. Technol. 35 217–221 Occurrence Handle10.1016/j.postharvbio.2004.08.001

    Article  Google Scholar 

  • D. P. Overy K. KarlshØj M. J. Due (2005b) ArticleTitleTemperature and enzymatic profiling of taxa from the Penicillium series Corymbifera; species responsible for blue mould storage rot in bulbs J. Plant Pathol. 87 53–59

    Google Scholar 

  • D. P. Overy T. O. Larsen P. W. Dalsgaard K. Frydenvang R. K. Phipps M. H. G. Monro C. Christophersen (2005c) ArticleTitleAndrastin A and barceloneic acid metabolites, protein farnesyl transferase inhibitors from Penicillium albocoremium: chemotaxonomic significance and pathological implications Mycol. Res. 87 53–59

    Google Scholar 

  • T. A. Prince C. T. Stephens R. C. Herner (1988) ArticleTitlePathogenicity, fungicide resistance, and ethylene production of Penicillium spp. isolated from tulip bulbs Phytopathology 78 682–686

    Google Scholar 

  • D. Qian D. Zhou J. Rong C. L. Cramer Z. Yang (1996) ArticleTitleProtein farnesyltransferase in plants: molecular characterization and involvement in cell cycle control Plant Cell 8 2381–2394 Occurrence Handle10.1105/tpc.8.12.2381 Occurrence Handle8989889

    Article  PubMed  Google Scholar 

  • T. A. Reshetilova A. G. Kozlovsky (1990) ArticleTitleSynthesis and metabolism of roquefortine in Penicillium species J. Basic Microbiol. 30 109–114 Occurrence Handle2352134

    PubMed  Google Scholar 

  • Reshetilova, T. A., Kuleshova, O. V., and Kozlovsky, A. G. 1986. Formation of roquefortine and products of its metabolism by a culture of Penicillium farinosum. Microbiology55:333–337.

  • T. A. Reshetilova T. V. Kulakovskaya T. N. Kuvichkina A. G. Kozlovsky (1994) ArticleTitleTransport of alkaloid roquefortine into cells of the fungus Penicillium farinosum Microbiology 63 230–232

    Google Scholar 

  • T. A. Reshetilova N. G. Vinokurova V. N. Khmelenina A. G. Kozlovsky (1995) ArticleTitleThe role of roquefortine in the synthesis of alkaloids meleagrin, glandicolines A and B, and oxaline in fungi Penicillium glandicola and P. atramentosum Microbiology 64 27–29

    Google Scholar 

  • M. P. Running M. Lavy H. Sternberg A. Galichet W. Gruissem S. Hake N. Ori S. Yalovsky (2004) ArticleTitleEnlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases Proc. Natl. Acad. Sci. USA 101 7815–7820 Occurrence Handle10.1073/pnas.0402385101 Occurrence Handle15128936

    Article  PubMed  Google Scholar 

  • G. J. Saaltink (1971) ArticleTitleThe infection of bulbs by Penicillium sp Int. Soc. Hort. Sci. 23 235–241

    Google Scholar 

  • P. M. Scott M. A. Merrien J. Polonsky (1976) ArticleTitleRoquefortine and isofumigaclavine A, metabolites from Penicillium roqueforti Experientia 32 140–142 Occurrence Handle10.1007/BF01937728

    Article  Google Scholar 

  • C. F. B. SÉnÉ M. C. McCann R. H. Wilson R. Grinter (1994) ArticleTitleFourier-transform Raman and Fourier-transform infrared spectroscopy: an investigation of five higher plant cell walls and their components Plant Physiol. 106 1623–1631 Occurrence Handle12232436

    PubMed  Google Scholar 

  • J. Smedsgaard (1997) ArticleTitleMicro-scale extraction procedure for standardized screening of fungal metabolite production in cultures J. Chromatogr., A 760 264–270

    Google Scholar 

  • M. Taniguchi Y. Satomura (1970) ArticleTitleIsolation of viridicatin from Penicillium crustosum, and physiological activity of viridicatin and its 3-carboxymethylene derivate on microorganisms and plants Agric. Biol. Chem. 34 506–510

    Google Scholar 

  • W. B. Turner (1971) Fungal Metabolites Academic Press London, UK

    Google Scholar 

  • M. A. Vincent J. I. Pitt (1989) ArticleTitlePenicillium allii, a new species from Egyptian garlic Mycologia 81 300–303

    Google Scholar 

  • M. Wink (2003) ArticleTitleEvolution of secondary metabolites from an ecological and molecular phylogenetic perspective Phytochemistry 64 3–19 Occurrence Handle10.1016/S0031-9422(03)00300-5 Occurrence Handle12946402

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Research activities were funded by the Danish Research Council under the project “Functional biodiversity in Penicillium and Aspergillus” (grant No. 9901295). The authors would like to acknowledge Hanne Jacobsen for MS technical support, Xuiping Liu for laboratory assistance with the processing of the SPE samples, and Richard Phipps and Kristian Karlshøj for bulb inoculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Overy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Overy, D.P., Nielsen, K.F. & Smedsgaard, J. Roquefortine/Oxaline Biosynthesis Pathway Metabolites in Penicillium ser. Corymbifera: In Planta Production and Implications for Competitive Fitness. J Chem Ecol 31, 2373–2390 (2005). https://doi.org/10.1007/s10886-005-7107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-005-7107-y

Key Words

Navigation