Skip to main content
Log in

Phytotoxic Effects of 21 Plant Secondary Metabolites on Arabidopsis thaliana Germination and Root Growth

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

This study investigated potential phytotoxic effects on germination and root growth of 21 plant secondary metabolites (sinapinic, syringic, vanillic, ferulic, p-coumaric, chlorogenic, gallic, gentisic, protocatechuic, p-hydroxybenzoic, and trans-cinnamic acids, and eucalyptol, quercetin, vanillin, syringaldehyde, rutin, 2-benzoxazolinone, protocatechualdehyde, tyrosol, juglone, and l-mimosine) in the plant model Arabidopsis thaliana. Eleven of the 21 molecules showed significant inhibitory effects on germination, and 17 inhibited root growth. Inhibitory effects on root growth were more evident when nutrients were not added. We present dose–response curves for germination effects and IC50 values for each compound, along with possible explanations of the observed inhibitory actions in terms of molecular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aliotta, G., Cafiero, G., and Martínez-Otero, A. 2006. Weed germination, seedling growth and their lesson for allelopathy in agriculture, pp. 285–297, in M. J. Reigosa, N. Pedrol, L. Gonzales (eds.). Allelopathy: A Physiological Process with Ecological Implications. Springer, Netherlands.

    Google Scholar 

  • Angelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., and Flamini, G. 2003. Essential oils from Mediterranean Lamiaceae as weed germination inhibitors. J. Agric. Food Chem. 51:6158–6164.

    Article  PubMed  CAS  Google Scholar 

  • Baerson, S. R., Sánchez-Moreiras, A., Pedrol-Bonjoch, N., Schulz, M., Kagan, I. A., Agarwal, A. K., Reigosa, M. J., and Duke, S. O. 2005. Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J. Biol. Chem. 280:21867–21881.

    Article  PubMed  CAS  Google Scholar 

  • Baleroni, C. S. S., Ferrarese, M. L. L., Braccini, A. L., Scapim, C. A., and Ferrarese-Filho, O. 2000. Effects of ferulic and p-coumaric acids on canola (Brassica napus L. cv. Hyola 401) seed germination. Seed Sci. Tech. 28:333–340.

    Google Scholar 

  • Belz, R. G. and Hurle, K. (2004). A novel laboratory screening bioassay for crop seedling allelopathy. J. Chem. Ecol. 30:175–198.

    Article  PubMed  CAS  Google Scholar 

  • Campos, F. M., Couto, J. A., and Hogg, T. A. 2003. Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J. Appl. Microbiol. 94:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier, F., Pata, M., Nacry, P., Doumas, P., and Rossignol, M. 2003. Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ. 26:1839–1850.

    Article  CAS  Google Scholar 

  • Chiapusio, G., Sánchez, A. M., Reigosa, M. J., González, L., and Pellisier, F. 1997. Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 23:2445–2453.

    Article  CAS  Google Scholar 

  • Dayan, F. E., Romagni, J. G., and Duke, S. O 2000. Investigating the mode of action of natural phytotoxins. J. Chem. Ecol. 26:2079–2094.

    Article  CAS  Google Scholar 

  • Filleur, S., Walch-Liu, P., Gan, Y., and Forde, B, G. 2005. Nitrate and glutamate sensing by plant roots. Biochem. Soc. Trans. 33:283–286.

    Article  PubMed  CAS  Google Scholar 

  • Hoagland, R. E. and Williams, R. D. 2004. Bioassays—useful tools for the study of allelopathy, pp. 315–351, in F. A. Macías et al. (eds.). Allelopathy, Chemistry and Mode of Action of Allelochemicals. CRC Press, Boca-Raton, FL.

    Google Scholar 

  • Inderjit and Dakshini, K. M. M. 1995. Allelopathic potential of an annual weed, Polygonum monspeliensis, in crops in India. Plant Soil 173:251–257.

    Article  CAS  Google Scholar 

  • Janovicek, K. J., Vyn, T. J., Voroney, R. P., and Allen, O. B. 1997. Early corn seedling growth response to phenolic acids. Can. J. Plant Sci. 77:391–393.

    CAS  Google Scholar 

  • Jose, S. and Gillespie, A. R. 1998. Allelopathy in black walnut (Juglans nigra L.) alley cropping. II. Effects of juglone on hydroponically grown corn (Zea mays L.) and soybean (Glycine max L. Mer.) growth and physiology. Plant Soil 203:199–205.

    Article  CAS  Google Scholar 

  • Li, H-H., Inoue, M., Nishimura, H., Mizutami, J., and Tsuzuki, E. 1993. Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J. Chem. Ecol. 19:1775–1787.

    Article  CAS  Google Scholar 

  • López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Nieto-Jacobo, M. F, Simpson, J., and Herrera-Estrella, L. 2002. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129:244–256.

    Article  PubMed  CAS  Google Scholar 

  • Macías, F. A., Castellano, D., and Molinillo, M. J. G. 2000. Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chem. 48:2512–2521.

    Article  PubMed  CAS  Google Scholar 

  • Martin, T., Oswald, O., and Graham, I. A. 2002. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol. 128:472–481.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell-Olds, T. 2001. Arabidopsis thaliana and its wild relatives: a model system for ecology and evolution. Trends Ecol. Evol. 16:693–700.

    Article  Google Scholar 

  • Nakai, S., Inoue, Y., and Hosomi, M. 2001. Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Res. 35:1855–1859.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, S. and Rao, S. S. R. 1999. Effect of hydroxy cinnamic acids on growth, nucleic acid, carbohydrate and nicotine content of tobacco (Nicotiana tabacum L.). Indian J. Plant Physiol. 4:167–170.

    CAS  Google Scholar 

  • Reigosa, M. J., Souto, X. C., and González, L. 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Reg. 28:83–89.

    Article  CAS  Google Scholar 

  • Shimizu, K. K. and Purugganan, M. D. 2005. Evolutionary and ecological genomics of Arabidopsis. Plant Physiol. 138:578–584.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, L. G. 2000. Juglone index: A possibility for expressing allelopathic potential of plant taxa with various life strategies. Acta Bot. Hung. 42:295–305.

    Google Scholar 

  • Wu, L., Guo, X., and Harivandi, M. A. 1998. Allelopathic effects of phenolic acids detected in buffalograss (Buchloe dactyloides) clippings on growth of annual bluegrass (Poa annua) and buffalograss seedlings. Environ. Exp. Bot. 39:159–167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Reigosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reigosa, M.J., Pazos-Malvido, E. Phytotoxic Effects of 21 Plant Secondary Metabolites on Arabidopsis thaliana Germination and Root Growth. J Chem Ecol 33, 1456–1466 (2007). https://doi.org/10.1007/s10886-007-9318-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9318-x

Keywords

Navigation