Skip to main content
Log in

Present or Past Herbivory: A Screening of Volatiles Released from Brassica rapa Under Caterpillar Attacks as Attractants for the Solitary Parasitoid, Cotesia vestalis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Females of the solitary endoparasitoid Cotesia vestalis respond to a blend of volatile organic compounds (VOCs) released from plants infested with larvae of their host, the diamondback moth (Plutella xylostella), which is an important pest insect of cruciferous plants. We investigated the flight response of female parasitoids to the cruciferous plant Brassica rapa, using two-choice tests under laboratory conditions. The parasitoids were more attracted to plants that had been infested for at least 6 hr by the host larvae compared to intact plants, but they did not distinguish between plants infested for only 3 hr and intact plants. Although parasitoids preferred plants 1 and 2 days after herbivory (formerly infested plants) over intact plants they also preferred plants that had been infested for 24 hr over formerly infested plants. This suggests that parasitoids can distinguish between the VOC profiles of currently and formerly infested plants. We screened for differences in VOC emissions among the treatments and found that levels of benzyl cyanide and dimethyl trisulfide significantly decreased after removal of the host larvae, whereas terpenoids and their related compounds continued to be released at high levels. Benzyl cyanide and dimethyl trisulfide attracted parasitoids in a dose-dependent manner, whereas the other compounds were not attractive. These results suggest that nitrile and sulfide compounds temporarily released from plants under attack by host larvae are potentially more effective attractants for this parasitoid than other VOCs that are continuously released by host-damaged plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Birkett, M. A., Chamberlain, K., Guerrieri, E., Pickett, J. A., Wadhams, L. J., and Yasuda, T. 2003. Volatiles from whitefly-infested plants elicit a host-locating response in the parasitoid, Encarsia formosa. J. Chem. Ecol. 29:1589–1600.

    Article  CAS  PubMed  Google Scholar 

  • Bruinsma, M., POSTHUMUS, M. A., Mumm, R., Mueller, M. J., Van Loon, J. J. A., and Dicke, M. 2009. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J. Exp. Botany 60:2575–2587.

    Article  CAS  PubMed  Google Scholar 

  • D’Auria, J. C., Pichersky, E., Schaub, A., Hansel, A., and Gershenzon, J. 2007. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J. 49:194–207.

    Article  PubMed  Google Scholar 

  • De Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580.

    Article  CAS  PubMed  Google Scholar 

  • Dugravot, S., Thibout, E., Abo-Ghalia, A., and Huignard, J. 2004. How a specialist and a nonspecialist insect cope with the dimethyl disulfide produced by Allium porrum. Entomol. Exp. Appl. 113:173–179.

    Article  Google Scholar 

  • Fatouros, N. E., Huigens, M. E., Van Loon, J. J. A., Dicke, M., and Hilker, M. 2005. Chemical communication—Butterfly anti-aphrodisiac lures parasitic wasps. Nature 433:704.

    Article  CAS  PubMed  Google Scholar 

  • Ferry, A., Dugravot, S., Delattre, T., Christides, J. -P., Auger, J., Bagnères, A. -G., Poinsot, D., and Cortesero, A. -M. 2007. Identification of a widespread monomolecular odor differentially attractive to several Delia radicum ground-dwelling predators in the field. J. Chem. Ecol. 33:2064–2077.

    Article  CAS  PubMed  Google Scholar 

  • Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., and Dicke, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J. Chem. Ecol. 23:2935–2954.

    Article  CAS  Google Scholar 

  • Gouinguené, S., and Turlings, T. C. J. 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129:1296–1307.

    Article  PubMed  Google Scholar 

  • Gouinguené, S., Pickett, J. A., Wadhams, L. J., Birkett, M. A., and Turlings, T. C. J. 2005. Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata). J. Chem. Ecol. 31:1023–1038.

    Article  PubMed  Google Scholar 

  • Herde, M., Gartner, K., Köllner, T. G., Fode, B., Boland, W., Gershenzon, J., Gatz, C., and Tholl, D. 2008. Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell 20:1152–1168.

    Article  CAS  PubMed  Google Scholar 

  • Hoballah, M. E., and Turlings, T. C. J. 2005. The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J. Chem. Ecol. 31:2003–2018.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim, M. A., Nissinen, A., and Holopainen, J. K. 2005. Response of Plutella xylostella and its parasitoid Cotesia plutellae to volatile compounds. J. Chem. Ecol. 31:1969–1984.

    Article  CAS  PubMed  Google Scholar 

  • Karban, R., and Baldwin, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago.

    Google Scholar 

  • Loughrin, J. H., Manukian, A., Heath, R. R., Turlings, T. C. J., and Tumlinson, J. H. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc. Natl. Acad. Sci. U. S. A. 91:11836–11840.

    Article  CAS  PubMed  Google Scholar 

  • Maeda, T., Takabayashi, J., Yano, S., and Takafuji, A. 2000. Effects of light on the tritrophic interaction between kidney bean plants, two-spotted spider mites and predatory mites, Amblyseius womersleyi (Acari: Phytoseiidae). Exp. Appl. Acarol. 24:415–425.

    Article  CAS  PubMed  Google Scholar 

  • Mattiacci, L., Dicke, M., and Posthumus, M. A. 1994. Induction of parasitoid attracting synomone in Brussels sprouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage and herbivore damage. J. Chem. Ecol. 20:2229–2247.

    Article  CAS  Google Scholar 

  • Mattiacci, L., Dicke, M., and Posthumus, M. A. 1995. β-Glucosidase: an elicitor of herbivore-induced plant odor that attracts hosts-searching parasitic wasps. Proc. Natl. Acad. Sci. U. S. A. 92:2036–2040.

    Article  CAS  PubMed  Google Scholar 

  • Mattiacci, L., Ambühl-Rocca, B., Scascighini, N., D’Alessandro, M., Hern, A., and Dorn, S. 2001. Systemically induced plant volatiles emitted at the time of “danger”. J. Chem. Ecol. 27:2233–2252.

    Article  CAS  PubMed  Google Scholar 

  • Ratzka, A., Vogel, H., Kliebenstein, D. J., Mitchell-Olds, T., and Kroymann, J. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. U. S. A. 99:11223–11228.

    Article  CAS  PubMed  Google Scholar 

  • Sabelis, M. W., Takabayashi, J., Janssen, A., Kant, M. R., Van Wijk, M., Sznajder, B., et al. 2007. Ecology meets plant physiology: herbivore-induced plant responses and their indirect effects on arthropod communities, pp. 188–217, in T. Ohgushi, T. P. Craig and P. W. Price (eds.). Ecological Communities: Plant Mediation in Indirect Interaction Webs. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Scascighini, N., Mattiacci, L., D’Alessandro, M., Hern, A., Rott A. S., and Dorn, S. 2005. New insights in analysing parasitoid attracting synomones: early volatile emission and use of stir bar sorptive extraction. Chemoecology 15:97–104.

    Article  Google Scholar 

  • Sgoutas, D. S., and Kummerow, F. A. 1967. Cis-trans isomerization of unsaturated fatty acid methyl esters without double bond migration. Lipids 4:283–287.

    Article  Google Scholar 

  • Shiojiri, K., and Takabayashi, J. 2005. Parasitoid preference for host-infested plants is affected by the risk of intraguild predation. J. Insect Behav. 18:567–576.

    Article  Google Scholar 

  • Shiojiri, K., Takabayashi, J., Yano, S., and Takafuji, A. 2000. Flight response of parasitoid toward plant-herbivore complexes: A comparative study of two parasitoid-herbivore systems on cabbage plants. Appl. Entomol. Zool. 35:87–92.

    Article  Google Scholar 

  • Shiojiri, K., Ozawa, R., and Takabayashi, J. 2006a. Plant volatiles, rather than light, determine the nocturnal behavior of a caterpillar. PloS Biol. 4:e164. doi:10.1371/journal.pbio.0040164.

    Article  PubMed  Google Scholar 

  • Shiojiri, K., Ozawa, R., Matsui, K., Kishimoto, K. Kugimiya, S., and Takabayashi, J. 2006b. Role of the lipoxygenase/lyase pathway of host-food plants in the host searching behavior of two parasitoid species, Cotesia glomerata and Cotesia plutellae. J. Chem. Ecol. 32:969–979.

    Article  CAS  PubMed  Google Scholar 

  • Smid, H. M., Van Loon, J. J. A., Posthumus, M. A., and Vet, L. E. M. 2002. GC-EAG-analysis of volatiles from Brussels sprouts plants damaged by two species of Pieris caterpillars: olfactory receptive range of a specialist and a generalist parasitoid wasp species. Chemoecology 12:169–176.

    Article  CAS  Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. 1995. Biometry: The Principles and Practice of Statistics in Biological Research (3rd ed.). W. H. Freeman and Company, New York.

    Google Scholar 

  • Takabayashi, J., and Dicke, M. 1996. Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1:109–113.

    Article  Google Scholar 

  • Takabayashi, J., Dicke, M., and Posthumus, M. A. 1994. Volatile herbivore-induced terpenoids in plant-mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354.

    Article  CAS  Google Scholar 

  • Tatemoto, S., and Shimoda, T. 2008. Olfactory responses of the predatory mites (Neoseiulus cucumeris) and insects (Orius strigicollis) to two different plant species infested with onion thrips (Thrips tabaci). J. Chem. Ecol. 34:605–613.

    Article  CAS  PubMed  Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host seeking parasitic wasps. Science 250:1251–1253.

    Article  CAS  PubMed  Google Scholar 

  • Turlings, T. C. J., Wäckers, F. L., Vet, L. E. M., Lewis, W. J., and Tumlinson, J. H. 1993. Learning of host-finding cues by hymenopterous parasitoids, pp. 51–78, in D. R. Papaj and A. C. Lewis (eds.). Insect Learning. Ecological and Evolutionary Perspectives. Chapman & Hall, New York.

    Google Scholar 

  • Turlings, T. C. J., Lengwiler, U. B., Bernasconi M. L., and Wechsler, D. 1998. Timing of induced volatile emissions in maize seedlings. Planta 207:146–152.

    Article  CAS  Google Scholar 

  • Van Poecke, R. M. P., and Dicke, M. 2002. Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. J. Exp. Botany 53:1793–1799.

    Article  CAS  Google Scholar 

  • Van Poecke, R. M. P., Posthumus, M. A., and Dicke, M. 2001. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral and gene-expression analysis. J. Chem. Ecol. 27:1911–1928.

    Article  CAS  PubMed  Google Scholar 

  • Vet, L. E. M., Lewis, W. J., and Cardé, R. T. 1995. Parasitoid foraging and learning, pp. 65–101, in R. T. Cardé and W. J. Bell (eds.). Chemical Ecology of Insects II. Chapman & Hall, New York.

    Google Scholar 

  • Whitman, D. W., and Eller, F. J. 1992. Orientation of Microplitis croceipes (Hymenoptera, Braconidae) to green leaf volatiles: Dose–response curves. J. Chem. Ecol. 18:1743–1753.

    Article  CAS  Google Scholar 

  • Wittstock, U., and Halkier, B. A. 2002. Glucosinolate research in the Arabidopsis era. Trends Plant Sci. 7: 263–270.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Kimiko Kanbe and Yumiko Togashi (NARC) for their help in rearing insects and cultivating plants used in the experiments. This study was partly supported by a Grant-in-Aid for Young Scientists (B) [No. 21710241 for SK] and by a Grant-in-Aid for Scientific Research (B) [No. 19380188 for TS] from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichi Kugimiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kugimiya, S., Shimoda, T., Tabata, J. et al. Present or Past Herbivory: A Screening of Volatiles Released from Brassica rapa Under Caterpillar Attacks as Attractants for the Solitary Parasitoid, Cotesia vestalis . J Chem Ecol 36, 620–628 (2010). https://doi.org/10.1007/s10886-010-9802-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9802-6

Key Words

Navigation