Skip to main content
Log in

Differential Activity of Multiple Saponins Against Omnivorous Insects with Varying Feeding Preferences

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A variety of glycosylated and unglycosylated saponins from seven different plant families (Aquifoliaceae, Asparagaceae, Caryophyllaceae, Dioscoreaceae, Leguminosae, Rosaceae, Sapindaceae) were tested against the corn earworm, Helicoverpa zea, and the fall armyworm, Spodoptera frugiperda. The corn earworm feeds readily on both monocots and dicots, while the fall armyworm is primarily a grass feeder. Most of the saponins were similarly effective or ineffective against both insect species, with the glycosides being the primary active form (compared to aglycones). However, one aglycone possessed antifeedant properties toward the fall armyworm. Thus, in contrast to many plant secondary metabolites effective against either of these two species where the aglycone is more effective, in the case of the saponins the opposite is generally true. This appears to be a contradictory strategy of plant defenses that requires further consideration. The activity of protodioscin against insects is reported for the first time and may be important in insect defense by the bioenergy crop switchgrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adel, M.M., Sehnal, F.D., and Jurzysta, M. 2000. Effects of alfalfa saponins on the moth Spodoptera littoralis. J. Chem. Ecol. 26: 1065–1078.

    Article  CAS  Google Scholar 

  • Applebaum, S.W. and Birk, Y., 1979. Saponins. pp 539–565 in G.A. ROSENTHAL and D.H. JANZEN (eds.), Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, NY.

    Google Scholar 

  • Berhow, M.A., Kong, S.B., Vermillion, K.E., and Duval, S.M. 2006. Complete quantification of group A and group B soyasaponins in soybeans. J. Agric. Food Chem. 54: 2035–2044.

    Article  PubMed  CAS  Google Scholar 

  • Chapagain, B.P. and Wiesman, Z. 2006. Phyto-saponins as a natural adjuvant for delivery of agromaterials through plant cuticle membranes. J. Agric. Food Chem. 54: 6277–6285.

    Article  PubMed  CAS  Google Scholar 

  • De Geyter, E., Lambert, E., Geelen, D., and Smagghe, G. 2007. Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol. 1: 96–105.

    Google Scholar 

  • Dowd, P.F. 1988. Toxicological and biochemical interactions of the fungal metabolites fusaric and kojic acid with xenobiotics in Heliothis zea (F.) and Spodoptera frugiperda (J.E. Smith). Pestic. Biochem. Physiol. 31: 123–134.

    Article  Google Scholar 

  • Dowd, P.F. 1989. Fusaric acid: A secondary fungal metabolite that synergizes toxicity of cooccurring host allelochemicals to the corn earworm, Heliothis zea (Lepidoptera). J. Chem. Ecol. 15: 249–254.

    Article  CAS  Google Scholar 

  • Dowd, P.F., Smith, C.M., and Sparks, T.C. 1983. Detoxification of plant toxins by insects. Insect Biochem. 13: 453–468.

    Article  CAS  Google Scholar 

  • Dowd, P.F., Johnson, E.T., and Pinkerton, T.S. 2007. Oral toxicity of β-N-acetyl hexosaminidase to insects. J. Agric. Food Chem. 55: 3421–3428.

    Article  PubMed  CAS  Google Scholar 

  • Eisner, T. and Halpern, B.P. 1971. Taste distortion and plant palatability. Science. 172: 1362.

    Article  PubMed  CAS  Google Scholar 

  • Flaoyen, A. 2000. Plant associated hepatogenous photosensitivity diseases. ACS Symp. Ser. 745: 204–219.

    Article  CAS  Google Scholar 

  • Francis, G., Kerem, Z., Makkar, H.P.S., and Becker, K. 2002. The biological action of saponins in animal systems: A review. Brit. J. Nutr. 88:587–605.

    Article  PubMed  CAS  Google Scholar 

  • Frechet, D., Christ, B., Monegier Du Sorbier, B., Fischer, H., and Vuilhorgne, M. 1991. Four triterpenoid saponins from dried roots of Gypsophila species. Phytochemistry 30: 927–931.

    Article  PubMed  CAS  Google Scholar 

  • Ganzera, M., Bedir, L., and Khan, I.A. 2001. Determination of steroidal saponins in Tribulus terrestris by reversed-phase high performance liquid chromatography and evaporative light scattering detection. J. Pharm. Sci. 11: 1753–1758.

    Google Scholar 

  • Güçlüstünda, O., and Mazza, G. 2007. Saponins: Properties, applications and processing. Crit. Rev. Food Sci. Nutr. 47: 231–258.

    Article  Google Scholar 

  • Guo, S., Falk, E., Kenne, L., Rönnberg, B., and Sundquist, B.G. 2000. Triterpenoid saponins containing an acetylated branched D-fucosyl residue from Quillaja saponaria Molina. Phytochemistry 53: 861–868.

    Article  PubMed  CAS  Google Scholar 

  • Harborne, J.B. and Baxter, H. 1993. Phytochemical Dictionary. P 791. Taylor and Francis, Bristol, PA.

    Google Scholar 

  • Higuchi, R. Tokimitsu, Y., Hamada, N., Komori, T. and Kawasaki, T. 1985. A new cleavage method for the sugar-aglycone linkage in saponin. Liebigs Ann. Chem. 1985: 1192–1201.

    Article  Google Scholar 

  • Hostettmann, K. and Marston, A. 1995. Saponins. P 560. Cambridge University Press. Cambridge.

    Book  Google Scholar 

  • Kreuger, B. and Potter, D.A. 1994. Changes in saponins and tannins in ripening holly fruits and effects of fruit consumption on nonadapted insect herbivores. Am. Midl. Nat. 152: 185–191.

    Google Scholar 

  • Lacaille-Dubois, M.A. 2000. Biologically and pharmacologically active saponins from plants - recent advances. pp. 205–218. in W. OLEZEK and A. MARSTON (eds.) Saponins in Food, Feedstuffs and Medicinal Plants. Kluwer, Netherlands.

    Google Scholar 

  • Lee, S.T., Mitchell, R.B., Want, Z., Heiss, C., Gardner, D.R., and Azadi, P. 2009. Isolation, characterization and quantification of steroidal saponins in switchgrass (Panicum virgatum L.). J. Agric. Food Chem. 57: 2599–2604.

    Article  CAS  Google Scholar 

  • Metcalf, R.A. and Metcalf, R.F. 1995. Destructive and Useful Insects. P 1071. Academic, New York.

    Google Scholar 

  • Nielsen, N.T., Nielsen, J., and Staerk, D. 2010. New resistance-correlated saponins from insect-resistant crucifer Barbarea vulgaris. J. Agric. Food Chem. 58: 5509–5514.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou, K., Melton, R.E., Leggett, M., Daniels, M.J., and Osbourn, A.E. 1999. Compromised disease resistance in saponin-deficient plants. Proc. Natl. Acad. Sci. USA 96: 12923–12928.

    Article  PubMed  CAS  Google Scholar 

  • Pelah, D., Abramovieb, S., Markus, A., and Wiesman, Z. 2002. The use of commercial saponin from Quillaja saponaria bark as a natural larvacidal agent against Aedes aegypti and Culex pipiens. J. Ethnopharm. 81:407–409.

    Article  CAS  Google Scholar 

  • Rao, A.V. and Gurfinkel, D.M. 2000. Dietary saponins and human health. pp. 255–270. in W. OLESZEK and A. MARSTON (eds.). Saponins in Food, Feedstuffs and Medicinal Plants. Kluwer, Netherlands.

    Google Scholar 

  • Rosenthal, G.A. and Janzen, D.H. 1979. Herbivores: Their Interaction with Secondary Plant Metabolites. P 718. Academic, NY.

    Google Scholar 

  • Saha, S., Walia, S., Kumar, J., Dhingra, S., and Parmar, B. 2010. Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyraceae and Sapindus mukorossi. J. Agric. Food Chem. 58: 434–440.

    Article  PubMed  CAS  Google Scholar 

  • Shi, J., Arunasalam, K., Young, D., Kakuda, Y. Mittal, G., and Jiang, Y. 2004. Saponins from edible legumes: Chemistry, processing and health benefits. J. Med. Food. 7: 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.M., Kahn, Z.R., and PATHAK, M.D. 1994. Use of tissue culture and artificial diets for evaluating insect resistance. pp. 291–305. in C.M. Smith, Z.R. Kahn and M.D. PATHAK (eds.) Techniques for Evaluating Insect Resistance in Crop Plants. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Spencer, K.C. 1987. Specificity of action of allelochemicals: Diversification of glycosides. ACS Symp. Ser. 330: 275–288.

    Article  CAS  Google Scholar 

  • Wang, M.; Tadmor, Y., Wu., Q.L., Chni, C.K., Garrason, S.A., and Simon, J.E. 2003. Quantification of protodioscin and rutin in asparagus shoots by LC/MS and HPLC methods. J. Agric. Food. Chem. 51: 6133–6136.

    Google Scholar 

  • Wiesman, Z. and Chapagain, B. 2003. Laboratory evaluation of natural saponin as a bioactive agent against Aedes aegypti and Culex pipiens Dengue Bull. 27: 168–173.

    Google Scholar 

  • USEPA. 2002. Saponins of Chenopodium quinoa (097094). Fact Sheet. http://epa.gov/opp00001/biopesticides/ingredients/factsheets/factsheet_097094.html.

  • USEPA. 2007. Saponins of Quillaja saponaria (097095). Fact Sheet. http://epa.gov/opp00001/biopesticides/ingredients/factsheets/factsheet_097095.html.

Download references

Acknowledgements

We thank S. Duval, R. Holloway and D. Lee for technical assistance, K.P. Vogel for information on saponin content of switchgrass, and M.A. Jackson, K.P. Vogel, and F.E. Vega for comments on prior drafts of the manuscript.

Disclaimer

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick F. Dowd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dowd, P.F., Berhow, M.A. & Johnson, E.T. Differential Activity of Multiple Saponins Against Omnivorous Insects with Varying Feeding Preferences. J Chem Ecol 37, 443–449 (2011). https://doi.org/10.1007/s10886-011-9950-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9950-3

Key Words

Navigation