Skip to main content
Log in

Characterization of Volatile Organic Compounds Emitted by Barley (Hordeum vulgare L.) Roots and Their Attractiveness to Wireworms

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Root volatile organic compounds (VOCs), their chemistry and ecological functions have garnered less attention than aboveground emitted plant VOCs. We report here on the identification of VOCs emitted by barley roots (Hordeum vulgare L.). Twenty nine VOCs were identified from isolated 21-d-old roots. The detection was dependent on the medium used for root cultivation. We identified 24 VOCs from 7-d-old roots when plants were cultivated on sterile Hoagland gelified medium, 33 when grown on sterile vermiculite, and 34 on non-sterile vermiculite. The major VOCs were fatty acid derived compounds, including hexanal, methyl hexanoate, (E)-hex-2-enal, 2-pentylfuran, pentan-1-ol, (Z)-2-(pentenyl)-furan, (Z)-pent-2-en-1-ol, hexan-1-ol, (Z)-hex-3-en-1-ol, (E)-hex-2-en-1-ol, oct-1-en-3-ol, 2-ethylhexan-1-ol (likely a contaminant), (E)-non-2-enal, octan-1-ol, (2E,6Z)-nona-2,6-dienal, methyl (E)-non-2-enoate, nonan-1-ol, (Z)-non-3-en-1-ol, (E)-non-2-en-1-ol, nona-3,6-dien-1-ol, and nona-2,6-dien-1-ol. In an olfactometer assay, wireworms (larvae of Agriotes sordidus Illiger, Coleoptera: Elateridae) were attracted to cues emanating from barley seedlings. We discuss the role of individual root volatiles or a blend of the root volatiles detected here and their interaction with CO2 for wireworm attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ali JG, Alborn HT, Stelinski LL (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Ecol 99:26–35

    Article  CAS  Google Scholar 

  • Aratchige NS, Lesna I, Sabelis MW (2004) Below-ground plant parts emit herbivore-induced volatiles: Olfactory responses of a predatory mite to tulip bulbs infested by rust mites. Exp Appl Acarol 33:21–30

    Article  PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishloka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515

    Article  PubMed  CAS  Google Scholar 

  • Asensio D, Rapparini F, Peñuelas J (2012) AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry. 77:149–161

    Google Scholar 

  • Barber DA, Martin JK (1976) The release of organic substances by cereal roots into soil. New Phytol 76:69–80

    Article  CAS  Google Scholar 

  • Barsics F, Haubruge E, Verheggen FJ (2013) Wireworms’ management: an overview of the existing methods, with particular regards to Agriotes spp. (Coleoptera: Elateridae). Insects 4:117–152

    Google Scholar 

  • Binder RG, Turner CE, Flath RA (1990) Volatile components of purple starthistle. J Agric Food Chem 38:1053–10556

    Article  CAS  Google Scholar 

  • Bukovinszky T, Gols R, Posthumus MA, Vet LEM, Van Lenteren JC (2005) Variation in plant volatiles and attraction of the parasitoid Diadegma semiclausum (Hellén). J Chem Ecol 31:461–480

    Google Scholar 

  • Chisholm MG, Wilson MA, Gaskey GM (2003) Characterization of aroma volatiles in key lime essential oils (Citrus aurantifolia Swingle). Flavour Frag J 18:106–115

    Google Scholar 

  • Choi H-S (2003) Character impact odorants of citrus hallabong [(C. unshiu Marcov x C. sinensis Osbeck) x C. reticulata Blanco] cold-pressed peel oil. J Agric Food Chem 51:2687–2692

    Google Scholar 

  • Chung TY, Eiserich JP, Shibamoto T (1993) Volatile compounds isolated from edible Korean chamchwi (Aster scaber Thunb). J Agric Food Chem 41:1693–1697

    Google Scholar 

  • Cobb FW Jr, Krstic M, Zavarin E, Barber HW Jr (1968) Inhibitory effects of volatile oleoresin components on Fomes annosus and four Ceratocystis species. Phytopathology 58:1327–1335

  • Cocquempot C, Martinez M, Courbon R, Blanchet A, Caruhel P (1999) Nouvelles données sur l’identification des larves de taupins (Coleoptera: Elateridae): une aide à la connaissance biologique et à la cartographie des espèces nuisibles. In: ANPP - 5ème conférence internationale sur les ravageurs en agriculture, Montpellier, 7-8-9 décembre 1999, Paris: ANPP, 477–486

  • De Marques FA, Mcelfresh JS, Millar JG (2000) Kováts retention indexes of monounsaturated C12, C14, and C16 alcohols, acetates and aldehydes commonly found in lepidopteran pheromone blends. J Braz Chem Soc 11:592–599

    Article  CAS  Google Scholar 

  • Doane JF, Lee YW, Klingler J, Westcott ND (1975) Orientation response of Ctenicera destructor and other wireworms (Coleoptera: Elateridae) to germinating grain and to carbon dioxide. Can Entomol 107:1233–1252

    Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  PubMed  CAS  Google Scholar 

  • Ens EJ, Bremner JB, French K, Korth J (2009) Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol Invasions 11:275–287

    Google Scholar 

  • FAOstat, Food and Agriculture Organization of the United Nations, http://faostat.fao.org/

  • Ferreira V, Aznar M, Lopez R, Cacho J (2001) Quantitative gas chromatography-olfactometry carried out at different dilutions of an extract. Key differences in the odor profiles of four high-quality Spanish aged red wines. J Agric Food Chem 49:4818–4824

    Article  PubMed  CAS  Google Scholar 

  • Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: Molecular approaches to insect resistance. Curr Opin Biotechnol 15:155–161

    Article  PubMed  CAS  Google Scholar 

  • Filella I, Peñuelas J, Seco R (2009) Short-chained oxygenated VOC emissions in Pinus halepensis in response to changes in water availability. Acta Physiol Plant 31:311–318

    Google Scholar 

  • Guerin PM, Ryan MF (1984) Relationship between root volatiles of some carrot cultivars and their resistance to the carrot fly, Psila rosae. Entomol Exp Appl 36:217–224

    Google Scholar 

  • Hayata Y, Sakamoto T, Maneerat C, Li X, Kozuka H, Sakamoto K (2003) Evaluation of aroma compounds contributing to muskmelon flavor in Porapak Q extracts by aroma extract dilution analysis. J Agric Food Chem 51:3415–3418

    Article  PubMed  CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants - to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Heuskin S, Verheggen FJ, Haubruge E, Wathelet JP, Lognay G (2011) The use of semiochemical slow-release devices in integrated pest management strategies. Biotechnol Agron Soc Environ 15:459–470

    Google Scholar 

  • Hiltpold I, Erb M, Robert CAM, Turlings TCJ (2011) Systemic root signalling in a belowground, volatile-mediated tritrophic interaction. Plant Cell Environ 34:1267–1275

    Article  PubMed  CAS  Google Scholar 

  • Jansen RMC, Wildt J, Kappers IF, Bouwmeester HJ, Hofstee JW, Van Henten EJ (2011) Detection of diseased plants by analysis of volatile organic compound emission. Annu Rev Phytopathol 49:157–174

    Google Scholar 

  • Jassbi AR, Zamanizadehnajari S, Baldwin IT (2010) Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. J Chem Ecol 36:1398–1407

    Google Scholar 

  • Jennings W, Shibamoto T (1980) Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography. Academic, New York

    Google Scholar 

  • Johnson SN, Nielsen UN (2012) Foraging in the dark – chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38:604–614

    Article  PubMed  CAS  Google Scholar 

  • Johnson SN, Hawes C, Karley AJ (2009) Reappraising the role of plant nutrients as mediators of interactions between root- and foliar-feeding insects interactions between root- and foliar-feeding insects. Funct Ecol 23:699–706

    Article  Google Scholar 

  • Kalemba D, Kusewicz D, Swider K (2002) Antimicrobial properties of the essential oil of Artemisia asiatica Nakai. Phytother Res 16:288–291

    Google Scholar 

  • Kohara K, Kadomoto R, Kozuka H, Sakamoto K, Hayata Y (2006) Deodorizing effect of coriander on the offensive odor of the porcine large intestine. Food Sci Technol Res 12:38–42

    Article  CAS  Google Scholar 

  • Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Ciccioli P, Brancaleoni E, Frattoni M, Tavares TM, Kesselmeier J (2004) Seasonal differences in isoprene and light-dependent monoterpene emission by amazonian tree species. Global Change Biol 10:663–682

    Article  Google Scholar 

  • Lanoue A, Burlat V, Schurr U, Röse USR (2010) Induced root-secreted phenolic compounds as a belowground plant defense. Plant Signal Behav 5:1037–1038

    Article  PubMed  Google Scholar 

  • Lawo NC, Weingart GJF, Schuhmacher R, Forneck A (2011) The volatile metabolome of grapevine roots: First insights into the metabolic response upon Phylloxera attack. Plant Physiol Biochem 49:1059–1063

    Google Scholar 

  • Maffei M (2010) The plant volatilome, essay 13.7 in L. Taiz and E. Zeiger. Plant physiology, fifth edition online. Sinauer associates, Sunderland, Massachusetts. http://5e.plantphys.net/article.php?ch=e&id=520

  • Matsumoto Y (1970) Volatile organic sulfur compounds as insect attractants with special reference to host selection. In: Wood DL, Silverstein RM, Nakajima M (eds) Control of insect behavior by natural products. Academic, New York, pp 133–160

    Google Scholar 

  • Min DB, Callison AL, Lee HO (2003) Singlet oxygen oxidation for 2-pentylfuran and 2-pentenyfuran formation in soybean oil. J Food Sci 68:1175–1178

    Article  CAS  Google Scholar 

  • Paavolainen L, Kitunen V, Smolander A (1998) Inhibition of nitrification in forest soil Fby monoterpenes. Plant Soil 205:147–154

    Article  CAS  Google Scholar 

  • Parker WE (1996) The development of baiting techniques to detect wireworms (Agriotes spp., Coleoptera: Elateridae) in the field, and the relationship between bait-trap catches and wireworm damage to potato. Crop Prot 15:521–527

    Google Scholar 

  • Pic M, Pierre E, Martinez M, Genson G, Rasplus JY, Albert H (2008) Les taupins du genre Agriotes démasqués par leurs empreintes génétiques. AFPP - 8ème conférence internationale sur les ravageurs en agriculture. Montpellier 22–23 Octobre 2008, Paris: ANPP, 23–32

  • Piesik D, Łyszczarz A, Tabaka P, Lamparski R, Bocianowski J, Delaney KJ (2010) Volatile induction of three cereals: Influence of mechanical injury and insect herbivory on injured plants and neighbouring uninjured plants. Ann Appl Biol 157:425–434

    Article  CAS  Google Scholar 

  • Piesik D, Panka D, Delaney KJ, Skoczek A, Lamparski R, Weaver DK (2011a) Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.). J. Plant Physiol 168:878–886

    Google Scholar 

  • Piesik D, Wenda-Piesik A, Kotwica K, Lyszczarz A, Delaney KJ (2011b) Gastrophysa polygoni herbivory on rumex confertus: Single leaf VOC induction and dose dependent herbivore attraction/repellence to individual compounds. J Plant Physiol 168:2134–2138

    Google Scholar 

  • Qualley AV, Dudareva N (2009) Metabolomics of plant volatiles. Methods Mol Biol 553:329–343

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  PubMed  CAS  Google Scholar 

  • Rasmann S, Ali JG, Helder J, van der Putten WH (2012a) Ecology and evolution of soil nematode chemotaxis. J Chem Ecol 38:615–628

    Article  PubMed  CAS  Google Scholar 

  • Rasmann S, Hiltpold I, Ali J (2012b) The role of root-produced volatile secondary metabolites in mediating soil interactions. In: Advances in selected plant physiology aspects. Tech Open Access Publisher, Croatia, pp 269–290

    Google Scholar 

  • Reinecke A, Müller F, Hilker M (2008) Attractiveness of CO2 released by root respiration fades on the background of root exudates. Basic Appl Ecol 9:568–576

    Article  CAS  Google Scholar 

  • Rouseff RL, Onagbola EO, Smoot JM, Stelinski LL (2008) Sulfur volatiles in guava (psidium guajava L.) leaves: Possible defense mechanism. J Agric Food Chem 56:8905–8910

    Google Scholar 

  • Ruther J (2000) Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography–mass spectrometry. J Chromatogr A 890:313–319

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ortiz A, Romero-Segura C, Sanz C, Perez AG (2012) Synthesis of volatile compounds of virgin olive oil is limited by the lipoxygenase activity load during the oil extraction process. J Agric Food Chem 60:812–822

    Article  PubMed  CAS  Google Scholar 

  • Sanz C, Ansorena D, Bello J, Cid CC (2001) Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee. J Agric Food Chem 49:1364–1369

    Article  PubMed  CAS  Google Scholar 

  • Shiojiri K, Ozawa R, Matsui K, Kishimoto K, Kugimiya S, Takabayashi J (2006) Role of the lipoxygenase/lyase pathway of host-food plants in the host searching behavior of two parasitoid species, Cotesia glomerata and Cotesia plutellae. J Chem Ecol 32:969–979

    Google Scholar 

  • Soler R, Van der Putten WH, Harvey JA, Vet LE, Dicke M, Bezemer TM (2012) Root herbivore effects on aboveground multitrophic interactions: patterns, process and mechanisms. J Chem Ecol 38:755–767

    Article  PubMed  CAS  Google Scholar 

  • Sutherland ORW, Hillier JR (1972) Olfactory responses of Costelytra zealandica (Coleoptera: Melolonthinae) larvae to grass root odours. N Z J Sci 15:165–172

    Google Scholar 

  • Tapia T, Perich F, Pardo F, Palma G, Quiroz A (2007) Identification of volatiles from differently aged red clover (Trifolium pratense) root extracts and behavioural responses of clover root borer (Hylastinus obscurus) (Marsham) (Coleoptera: Scolytidae) to them. Biochem Syst Ecol 35:61–67

    Google Scholar 

  • Tressl R, Friese L, Fendesack F, Koppler H (1978) Studies of the volatile composition of hops during storage. J Agric Food Chem 26:1426–1430

    Article  CAS  Google Scholar 

  • Umano RP, Hagi Y, Shibamoto T (2002) Volatile chemicals identified in extracts from newly hybrid citrus, Dekopon (Shiranuhi mandarin Suppl. J.). J Agric Food Chem 50:5355–5359

    Google Scholar 

  • Valim MF, Rouseff RL, Lin J (2003) Gas chromatographic-olfactometric characterization of aroma compounds in two types of cashew apple nectar. J Agric Food Chem 51:1010–1015

    Article  PubMed  CAS  Google Scholar 

  • Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr 11:463–471

    Article  Google Scholar 

  • van Herk W, Vernon R, (2013) Wireworm damage to wheat seedlings: effect of temperature and wireworm state. J Pest Sci 86:63–75

    Google Scholar 

  • Varming C, Petersen MA, Poll L (2004) Comparison of isolation methods for the determination of important aroma compounds in blackcurrant (Ribes nigrum L.) juice, using nasal impact frequency profiling. J Agric Food Chem 52:1647–1652

    Google Scholar 

  • Vilela GR, de Almeida GS, D’Arce MABR, Moraes MHD, Brito JO, da Silva MFGF, Silva SC, de Stefano Piedade SM, Calori-Domingues MA, da Gloria EM (2009) Activity of essential oil and its major compound 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus Xavus Link and Aspergillus parasiticus Speare. J Stored Prod Res 45:108–111

  • Viles AL, Reese RN (1996) Allelopathic potential of Echinacea angustifolia D.C. Environ Exp Bot 36:39–43

  • Weckerle B, Bastl-Borrmann R, Richling E, Hör K, Ruff C, Schreier P (2001) Cactus pear (Opuntia ficus indica) flavour constituents - chiral evaluation (MDGC–MS) and isotope ratio (HRGC–IRMS) analysis. Flavour Frag J 16:360–363

    Google Scholar 

  • Wei A, Mura K, Shibamoto T (2001) Antioxidative activity of volatile chemicals extracted from beer. J Agric Food Chem 49:4097–4101

    Google Scholar 

  • Weingart G, Kluger B, Forneck A, Krska R, Schumacher R (2011) Establishment and application of a metabolomics workflow for identification and profiling of volatiles from leaves of Vitis vinifera by HS-SPME-GC-MS. Phytochem Anal. doi:10.1002/pca.1364

  • Weissteiner S, Huetteroth W, Kollmann M, Weißbecker B, Romani R, Schachtner J, Schütz S (2012) Cockchafer larvae smell host root scents in soil. PLoS One 7(10)

  • Wenda-Piesik A, Piesik D, Ligor T, Buszewski B (2010) Volatile organic compounds (VOCs) from cereal plants infested with crown rot: Their identity and their capacity for inducing production of VOCs in uninfested plants. Int J Pest Manag 56:377–383

    Article  CAS  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    Article  PubMed  CAS  Google Scholar 

  • Witcosky JJ, Schowalter TD, Hansen EM (1987) Host-derived attractants for the beetles Hylastes nigrinus (Coleoptera: Scolytidae) and Steremnius carinatus (Coleoptera: Curculionidae). Environ Entomol 16:1310–1313

  • Wu S, Krings U, Zorn H, Berger RG (2005) Volatile compounds from the fruiting bodies of beefsteak fungus Fistulina hepatica (Schaeffer: Fr.) Fr. Food Chem 92:221–226

    Google Scholar 

  • Yi HS, Heil M, Adame-Alvarez RM, Ballhorn DJ, Ryu CM (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 151:2152–2161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Marc Camerman and Franck Michels for research assistance, Dr. Marie Fiers for providing standards. Gembloux Agro-Bio Tech (University of Liège) funded the present project (Rhizovol project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laure Fauconnier.

Additional information

Aurélie Gfeller and Morgan Laloux contributed equally to the work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Dual-choice olfactometer used for the orientation experimentation of Agriotes sordidus towards all potential olfactory stimuli emitted by 7-d-old barley roots, i.e. CO2 and other VOCs. The roots were inserted through one of the lateral connections (a) and separated from the substrate with stainless gauze (b). Each wireworm was inserted into the device through the middle entry connection (c) and retrieved from the pipes with the substrate through one of the two endings (standard GL45 screwed ends and caps) (d). (DOC 48 kb)

Figure S2

Optimization of the HS-SPME-GC-MS method. Comparison of VOC profiles released by roots of barley and trapped on four types of fibre: A = polyacrylate (PA), B = polydimethylsiloxane (PDMS), C = carboxen/polydimethylsiloxane (CAR/PDMS), and D, E = divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS). (A) to D) column HP5ms, (E) column VF-WAXms. (DOC 749 kb)

Figure S3

Typical GC–MS chromatogram of the SPME analysis of VOCs emitted by excised 21-d-old barley roots. Numbers correspond to the following compounds: 1, Dimethyl sulfide; 2, Hexanal; 3, Methyl hexanoate; 4, (E)-Hex-2-enal; 5, 2-Pentylfuran; 6, Pentan-1-ol; 7, 2-(Pentenyl)furan; 8, (Z)-Pent-2-en-1-ol; 9, 6-Methyl-hept-5-en-2-one; 10, Hexan-1-ol; 11, (Z)-Hex-3-en-1-ol; 12, (E)-Hex-2-en-1-ol; 13, Oct-1-en-3-ol; 14, 2-Ethylhexan-1-ol; 15, (E)-Non-2-enal; 16, Dimethyl sulfoxide; 17, Octan-1-ol; 18, (2E,6Z)-Nona-2,6-dienal; 19, Methyl (E)-non-2-enoate; 20, Methyl benzoate; 21, Nonan-1-ol; 22, (Z)-Non-3-en-1-ol; 23, (E)-Non-2-en-1-ol; 24, Nona-3,6-dien-1-ol; 25, Nona-2,6-dien-1-ol; 26, Tetradecanal; 27, Dodecan-1-ol; 28, Dihydro-5-pentyl-2(3H)-furanone; 29, Hexadecanal. (PPTX 193 kb)

Figure S4

Typical GC–MS chromatogram of the SPME analysis of VOCs emitted by excised 7 d-old barley roots grown aseptically in Hoagland fertilized vermiculite. Numbers correspond to the following compounds: 1, Dimethyl sulfide; 2, Pentan-3-one; 3, Hexanal; 4, Butan-1-ol; 5, Pent-1-en-3-ol; 6, (E)-Hex-2-enal; 7, 2-Pentylfuran; 8, Pentan-1-ol; 9, (Z)-2-(Pentenyl)furan; 10, (Z)-Pent-2-en-1-ol; 11, Oct-6-en-2-one; 12, Hexan-1-ol; 13, (E)-Hex-2-en-1-ol; 14, Oct-1-en-3-ol; 15, Heptan-1-ol; 16, 6-Methylhept-5-en-2-ol; 17, 2-Ethylhexan-1-ol; 18, (E)-Non-2-enal; 19, Dimethyl sulfoxide; 20, Octan-1-ol; 21, (2E,6Z)-Nona-2,6-dienal; 22, Methyl (E)-non-2-enoate; 23, Methyl benzoate; 24, Nonan-1-ol; 25, (Z)-Non-3-en-1-ol; 26, (E)-Non-2-en-1-ol; 27, Nona-3,6-dien-1-ol; 28, Nona-2,6-dien-1-ol; 29, 2-Phenylethanol; 30, Dodecan-1-ol; 31, Methyl tetradecanoate; 32, Dihydro-5-pentyl-2(3H)-furanone; 33, Hexadecanal. (PPTX 190 kb)

ESM 1

(DOC 33 kb)

Table S1

(DOC 33.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gfeller, A., Laloux, M., Barsics, F. et al. Characterization of Volatile Organic Compounds Emitted by Barley (Hordeum vulgare L.) Roots and Their Attractiveness to Wireworms. J Chem Ecol 39, 1129–1139 (2013). https://doi.org/10.1007/s10886-013-0302-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0302-3

Keywords

Navigation