Skip to main content

Advertisement

Log in

Non-Uniform Membrane Probe Distribution in Resonance Energy Transfer: Application to Protein–Lipid Selectivity

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Biological membranes are, at the molecular level, quasi-two dimensional systems. Membrane components are often distributed non-uniformly in the bilayer plane, as a consequence of lipid phase separation/domain formation or local enrichment/depletion of particular lipid species arising form favorable/unfavorable lipid–membrane protein interactions. Due to its explicit dependence on donor–acceptor distance or local acceptor concentration, resonance energy transfer (RET) has large potential in the characterization of membrane heterogeneity. RET formalisms for the basic geometric arrangements relevant for membranes have now been known for several decades. However, these formalisms usually assume uniform distributions, and more general models are required for the study of membrane lateral heterogeneity. We present a model that addresses the possibility of non-uniform acceptor (e.g., lipid probe) distribution around each donor (e.g., protein) in a membrane. It considers three regions with distinct local acceptor concentration, namely, an exclusion zone, the membrane bulk, and, lying in between, a region of enhanced probability of finding acceptors (annular region). Numerical solutions are presented, and convenient empirical fitting functions are given for RET efficiency as a function of bulk acceptor surface concentration, for several values of the model parameters. The usefulness of the formalism is illustrated in the analysis of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. Förster (1949). Experimentelle und theoretische Untersuchung des zwischenmolekularen Ubergangs von Elektronennanregungsenergie. Z. Naturforsch. A 4, 321–327.

    Google Scholar 

  2. S. R. Rotman and F. X. Hartmman (1988). Non-radiative energy transfer in non-uniform codoped laser crystals. Chem. Phys. Lett. 152, 311–318.

    Article  CAS  Google Scholar 

  3. J. P. S. Farinha, J. M. G. Martinho, A. Yekta, and M. A. Winnik (1995). Direct nonradiative energy-transfer in polymer interphases—fluorescence decay functions from concentration profiles generated by Fickian diffusion. Macromolecules 28, 6084–6088.

    Article  CAS  Google Scholar 

  4. L. M. S. Loura, R. F. M. de Almeida, and M. Prieto (2001). Detection and characterization of membrane microheterogeneity by resonance energy transfer. J. Fluoresc. 11, 197–209.

    Article  Google Scholar 

  5. L. M. S. Loura, A. Fedorov, and M. Prieto (2001). Fluid–fluid membrane microheterogeneity: A fluorescence resonance energy transfer study. Biophys. J. 80, 776–788.

    PubMed  CAS  Google Scholar 

  6. R. F. M. de Almeida, L. M. S. Loura, A. Fedorov, and M. Prieto (2005). Lipid rafts have different sizes depending on membrane composition: A time-resolved fluorescence resonance energy transfer study. J. Mol. Biol. 346, 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  7. C. Gutierrez-Merino (1981). Quantitation of the Förster energy transfer for two-dimensional systems. I. Lateral phase separation in unilamellar vesicles formed by binary phospholipids mixtures. Biophys. Chem. 14, 247–257.

    Article  PubMed  CAS  Google Scholar 

  8. C. Gutierrez-Merino (1981). Quantitation of the Förster energy transfer for two-dimensional systems. II. Protein distribution and aggregation state in biological membranes. Biophys. Chem. 14, 259–266.

    Article  PubMed  CAS  Google Scholar 

  9. C. Gutierrez-Merino, F. Munkonge, A. M. Mata, J. M. East, B. L. Levinson, et al. (1987). The position of the ATP binding site on the (Ca2 +   +  Mg2 + )-ATPase. Biochim. Biophys. Acta 897, 207–216.

    Article  PubMed  CAS  Google Scholar 

  10. S. S. Antollini, M. A. Soto, I. B. de Romanelli, C. Gutiérrez-Merino, P. Sotomayor, et al. (1996). Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophys. J. 70, 1275–1284.

    Article  PubMed  CAS  Google Scholar 

  11. I. C. Bonini, S. S. Antollini, C. Gutiérrez-Merino, and F. J. Barrantes (2002). Sphingomyelin composition and physical asymmetries in native acetylcholine receptor-rich membranes. Eur. Biophys. J. 31, 417–427.

    Article  PubMed  CAS  Google Scholar 

  12. F. Fernandes, L. M. S. Loura, R. Koehorst, R. B. Spruijt, M. A. Hemminga, et al. (2004). Quantification of protein–lipid selectivity using FRET: Application to the M13 major coat protein. Biophys. J. 87, 344–352.

    Article  PubMed  CAS  Google Scholar 

  13. P. K. Wolber and B. S. Hudson (1979). An analytical solution to the Förster energy transfer problem in two dimensions. Biophys. J. 28, 197–210.

    PubMed  CAS  Google Scholar 

  14. B. Snyder and E. Freire (1982). Fluorescence energy transfer in two dimensions. A numeric solution for random and non-random distributions. Biophys. J. 40, 137–148.

    PubMed  CAS  Google Scholar 

  15. J. A. Poveda, J. A. Encinar, A. M. Fernández, C. R. Mateo, J. A. Ferragut, et al. (2002). Segregation of phosphatidic acid-rich domains in reconstituted acetylcholine receptor membranes. Biochemistry 41, 12253–12262.

    Article  PubMed  CAS  Google Scholar 

  16. L. Davenport, R. E. Dale, R. H. Bisby, and R. B. Cundall (1985). Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Biochemistry 24, 4097–4108.

    Article  PubMed  CAS  Google Scholar 

  17. Q. X. Jiang, D. N. Wang, and R. MacKinnon (2004). Electron microscopic analysis of KvAP voltage-dependent K +  channels in an open conformation. Nature 430, 806–810.

    Article  PubMed  CAS  Google Scholar 

  18. Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B. T. Chait, et al. (2003). X-ray structure of a voltage-dependent K +  channel. Nature 423, 33–41.

    Article  PubMed  CAS  Google Scholar 

  19. D. Marsh and L. I. Horváth (1998). Structure, dynamics and composition of the lipid–protein interface. Perspectives from spin-labelling. Biochim. Biophys. Acta 1376, 267–296.

    PubMed  CAS  Google Scholar 

  20. L. A. Sklar, B. S. Hudson, and R. D. Simoni (1977). Conjugated polyene fatty acids as fluorescent probes: Synthetic phospholipid membrane studies. Biochemistry 16, 819–828.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

L. M. S. L. acknowledges financial support from POCTI projects (FCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís M. S. Loura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capeta, R.C., Poveda, J.A. & Loura, L.M.S. Non-Uniform Membrane Probe Distribution in Resonance Energy Transfer: Application to Protein–Lipid Selectivity. J Fluoresc 16, 161–172 (2006). https://doi.org/10.1007/s10895-005-0036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0036-x

KEY WORDS:

Navigation