Skip to main content
Log in

Application of Fluorescence with Polarized Light to Evaluate the Orientation of Dyes Adsorbed in Layered Materials

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

A new method of fluorescence polarization is applied to evaluate the angle of the preferential orientation of Rhodamine 6G (R6G) dye adsorbed in supported thin films of Laponite (Lap) clay. The method is based in the determination of the fluorescence dichroic ratio, obtained from the recorded fluorescence spectra with the detection polarizer horizontally and vertically oriented, as a function of the twisted angle of the film around its vertical axis, keeping the excitation polarizer in a fixed direction. The validity of the method is checked by comparing the experimental results obtained with both vertically and horizontally polarized excitations to that previously provided by absorption spectroscopy with linearly polarized light. A preferential orientation angle with respect to the normal to the clay layer of 62° is derived for R6G monomers adsorbed in Lap films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. G. Schulz-Ekloff, D. Wöhrle, B. van Duffel, and R. A. Schooneydt (2002). Chromophores in porous silicas and minerals: Preparation and optical properties. Microporous Mesoporous Mater. 51, 91–138.

    Article  CAS  Google Scholar 

  2. C. Sanchez, B. Julián, P. Belleville, and M. Popall (2005). Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592.

    Article  CAS  Google Scholar 

  3. V. Ramamurthy, and D. F. Eaton (1994). Perspectives on solid-guest assemblies. Chem. Mater. 6, 1128–1136.

    Article  CAS  Google Scholar 

  4. M. Ogawa, and K. Kuroda (1995). Photofunctions of intercalation compounds. Chem. Rev. 95, 399–438.

    Article  CAS  Google Scholar 

  5. P. Innocenzi, and B. Lebeau (2005). Organic-inorganic hybrid materials for non-linear optics. J. Mater. Chem. 15, 3821–3831.

    Article  CAS  Google Scholar 

  6. G. Calzaferri, S. Huber, H. Maas, and C. Minkowski (2003). Host-guest antenna material. Angew. Chem. Int. Ed. 42, 3732–3758.

    Article  CAS  Google Scholar 

  7. R. D. Miller, D. M. Burland, M. Jurich, V. Y. Lee, C. R. Moylan, J. I. Thackara, R. J. Twieg, T. Verbiest, and W. Volksen (1996). High temperature NLO chromophores and polymers. Nonlinear Optics 15, 343–350.

    CAS  Google Scholar 

  8. R. A. Schooneydt (2002). Smectite-type clay minerals as nanomaterials. Clays Clay Min 50, 411–420.

    Article  Google Scholar 

  9. V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, T. Arbeloa López, and I. López Arbeloa (2004). Characterization of supported solid thin films of laponite clay. Intercalation of Rhodamine 6G Laser Dye. Langmuir 20, 57095717.

    Article  PubMed  Google Scholar 

  10. V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa (2004). Characterization of Rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 1 absorption spectroscopy. J. Phys. Chem. B 108, 20030–20037.

    Article  Google Scholar 

  11. V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa (2005). Characterization of Rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 fluorescence spectroscopy. J. Phys. Chem. B 109, 7443–7450.

    Article  PubMed  Google Scholar 

  12. V. Martínez Martínez, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa (2005). Orientation of adsorbed dyes in the interlayer space of clays. 1 Anisotropy of Rhodamine 6G in Laponite Films by vis-absorption with polarized light. Chem. Mater. 17, 4134–4141.

    Article  Google Scholar 

  13. F. López Arbeloa, and V. Martínez Martínez (2005). Polarization fluorescence spectroscopy to evaluate the orientation of adsorbed molecules in uniaxial 2D layered materials. J. Photochem. Photobiol. A (in press, doi:10.1016/j.photochem.2005.10.031, available on-line: www.sciencedirect.com).

  14. H. Van Ophen, and J. J. Fripiat (1979). Data Handbook for Clay Materials and Other Non-Metallic Minerals, Pergamon Press, London.

    Google Scholar 

  15. B. Valeur (2002). Molecular Fluorescence. Principles and Applications. Wiley-VCH, Weinheim.

    Google Scholar 

  16. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic, New York.

    Google Scholar 

  17. J. Michl, and E. W. Thulstrup (1989). Spectroscopy with Polarized Light. VCH Publishers, Inc., New York.

    Google Scholar 

  18. S. C. D. N. Lopes, E. Goormaghtigh, B. J. Costa, and M. A. R. B. Castanho (2004). Filipin orientation revealed by linear dichroism. Implication for a model of action. J. Am. Chem. Soc. 126, 5396–5402.

    Article  PubMed  CAS  Google Scholar 

  19. S. C. D. N. Lopes, and M. A. R. B. Castanho (2005). Overview of common spectroscopic methods to determine the orientation/alignment of membrane probes and drugs in lipidic bilayers. Cur. Org. Chem. 9, 889–898.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the Spanish MEC Minister (research project: MAT2004-04643-C03-02). V. M. M thanks the MECyD Minister for a research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando López Arbeloa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, V., Salleres, S., Bañuelos, J. et al. Application of Fluorescence with Polarized Light to Evaluate the Orientation of Dyes Adsorbed in Layered Materials. J Fluoresc 16, 233–240 (2006). https://doi.org/10.1007/s10895-005-0042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0042-z

KEY WORDS:

Navigation