Skip to main content
Log in

Comparative Investigation on Nanocrystal Structure and Luminescence Properties of Gadolinium Molybdates Codoped with Er3+/Yb3+

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This paper reports on the comparative investigation of nanocrystal structure and luminescence properties of Er3+/Yb3+-codoped gadolinium molybdate nanocrystals Gd2(MoO4)3 and Gd2MoO6 synthesized by the Pechini method with citric acid and ethylene glycol. Their crystallization, structure transformation, and morphologies have been investigated by X-ray diffraction, thermogravimetric/differential scanning calorimetry, and transmission electron microscopy. It is noticed that Er3+/Yb3+-codoped monoclinic Gd2(MoO4)3 nanocrystals have shown an intense upconversion through a sintering of the organic complex precursor at 600°C. Furthermore, it transforms to orthorhombic Gd2(MoO4)3 when the precursor is sintered at 900°C. In counterpart of monoclinic Gd2MoO6, however, the monoclinic structure remains unchanged when the precursor is sintered at a temperature ranging from 600°C to 900°C. Intense visible emissions of Er3+ attributed to the transitions of 2H11/2, 4S3/24I15/2 at 520 and 550 nm, and 4F9/24I15/2 at 650 nm have been observed upon an excitation with a UV source and a 980 nm laser diode, and the involved mechanisms have been explained. It is quite interesting to observe obvious differences both in the excitation and the upconversion emission spectra of Er3+/Yb3+-codoped Gd2(MoO4)3 respectively with monoclinic and orthorhombic structure. The quadratic dependence of fluorescence on excitation laser power has confirmed that two-photons contribute to upconversion of the green–red emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jia CJ, Sun LD, Luo F, Jiang XC, Wei LH, Yan CH (2004) Appl Phys Lett 84:5305

    Article  CAS  Google Scholar 

  2. Riwotzki K, Haase M (1998) J Phys Chem B 102:10129

    Article  CAS  Google Scholar 

  3. Wakefield G, Holland E, Dobson PJ, Hutchison JL (2001) Adv Mater 13:1557

    Article  CAS  Google Scholar 

  4. Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang HJ, Han YC (2002) Chem Mater 14:2224

    Article  CAS  Google Scholar 

  5. Guo H, Dong N, Yin M, Zhang WP, Lou LR, Xia SD (2004) J Phys Chem B 108:19205

    Article  CAS  Google Scholar 

  6. Lei YQ, Song HW, Yang LM, Yu LX, Liu ZX, Pan GH, Bai X, Fan LB (2005) J Chem Phys 123:174710

    Article  PubMed  Google Scholar 

  7. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2003) Chem Mater 15:2737

    Article  CAS  Google Scholar 

  8. Matsuura D (2002) Appl Phys Lett 81:4526

    Article  CAS  Google Scholar 

  9. Rosa-Cruz E, Diaz-Torres LA, Rodriguez-Rojas RA, Meneses-Nava MA, Barbosa-Garcia O (2003) Appl Phys Lett 83:4903

    Article  Google Scholar 

  10. Zhang QY, Feng ZM, Yang ZM, Jiang ZH (2006) J Quant Spectrosc Radiat Transfer 98:167

    Article  CAS  Google Scholar 

  11. Yi GS, Lu HC, Zhao SY, Ge Y, Yang WJ, Chen DP, Guo LH (2004) Nano Lett 4:2191

    Article  CAS  Google Scholar 

  12. Zeng JH, Su J, Li ZH, Ya RX, Li YD (2005) Adv Mater 17:2119

    Article  CAS  Google Scholar 

  13. Tuan VD, Guy G (2003) Sens Actuators B 9:104

    Google Scholar 

  14. Bao JP, Xu XW, Fan HL, Mu QY, Li YP (2003) Mater Rev (in Chinese) 17:191

    Google Scholar 

  15. Sivakumar S, Diamente PR, Veggel van FCJM (2006) Chem Eur J 12:5878

    Article  CAS  Google Scholar 

  16. Pechini MU (1967) US Patent No. 3330697

  17. Liu W, Farrington GC, Chaput F, Dunn B (1996) J Electrochem Soc 143(3):879

    Article  CAS  Google Scholar 

  18. Yi GS, Sun BQ, Yang FZ, Chen DP, Zhou YX, Cheng J (2002) Chem Mater 14:2910

    Article  CAS  Google Scholar 

  19. Bubb DM, Cohen D, Qadri SB (2005) Appl Phys Lett 87:131909

    Article  Google Scholar 

  20. Borchardt HJ, Bierstedt PE (1966) Appl Phys Lett 8:50

    Article  CAS  Google Scholar 

  21. Shur YaV, Nikolaeva EV, Shishkin EI, Baturin IS, Shur AG, Utschig T, Schlegel T, Laupascu DC (2005) Appl Phys Lett 98:74106

    Google Scholar 

  22. Pan YX, Su Q, Xu HF, Chen TH, Ge WK, Yang CL, Wu MM (2003) J Solid State Chem 74:69

    Article  Google Scholar 

  23. Evans JSO, Mary TA, Sleight AW (1997) J Solid State Chem 133:580

    Article  CAS  Google Scholar 

  24. Pollnau M, Gamelin DR, Luthi SR, Gudel HU, Hehlen MP (2000) Phys Rev B 61:3337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by NSFC (Grant No. 50472053), NCET (Grant No. 04-0823), YNSF (Grant No. E5050680) and China Postdoctoral Science Foundation (20060390200). We are grateful to Mr. C.H. Yang and Mr. G. X. Cheng for helpful discussions and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Y.X., Zhang, Q.Y. & Jiang, Z.H. Comparative Investigation on Nanocrystal Structure and Luminescence Properties of Gadolinium Molybdates Codoped with Er3+/Yb3+ . J Fluoresc 17, 444–451 (2007). https://doi.org/10.1007/s10895-007-0191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0191-3

Keywords

Navigation