Skip to main content
Log in

Plasmonic Enhancement of Single-Molecule Fluorescence Near a Silver Nanoparticle

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this short paper, we reported the enhanced fluorescence from a single fluorophore bound to a 50nm silver nanoparticle. We found that on average the Cy5 molecules bound to metal nanoparticles are approximately 15-fold brighter than that of free dyes, and that single molecule lifetimes are shorter as compared to free fluorophores. The increased emission rate is primarily the result of local plasmon enhancement. These results demonstrate that the use of fluorophore-metal interactions can increase the brightness and photostability of fluorophores for single molecule detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peterman EJG, Brasselet S, Moerner WE (1999) The fluorescence dynamics of single molecules of green fluorescent protein. J Phy Chem A 103:10553–10560

    Article  CAS  Google Scholar 

  2. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683

    Article  PubMed  CAS  Google Scholar 

  3. Garcia-Parajo MF, Veerman J, Bouwhuis R, Vallee R, van Hulst NF (2001) Optical probing of single fluorescent molecules and proteins. Chem Phys Che 2:347–360

    CAS  Google Scholar 

  4. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanaocrystas as fluorescent biological labels. Science 281:2013–2016

    Article  PubMed  CAS  Google Scholar 

  5. Malicka J, Gryczynski I, Fang J, Kusba J, Lakowicz JR (2003) Fluroescence spectral properties of cyanine dye-labeled DNA oliogmers on surfaces coated with silver particles anal. Biochem 317:136–146

    CAS  Google Scholar 

  6. Malicka J, Gryczynski I, Fang J, Kusba J, Lakowciz JR (2002) Photostability of Cy3 and Cy5-labeled DNA in the presence of metallic silver particles. J Fluoresc 12:439–447

    Article  CAS  Google Scholar 

  7. Lakowicz JR, Shen Y, D’Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:111–116

    Article  PubMed  CAS  Google Scholar 

  8. Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Annu Rev Phys Chem 49:441–480

    Article  PubMed  CAS  Google Scholar 

  9. Thomas M, Greffet J-J, Carminati R, Arias-Gonzalez JR (2004) Single-molecule spontaneous emission close to absorbing nanostructures. Appl Phys Lett 85:3863–3865

    Article  CAS  Google Scholar 

  10. Chen S, Wang Z, Ballato J, Foulger S, Carroll D (2003) Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc 125:16186–16187

    Article  PubMed  CAS  Google Scholar 

  11. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994

    Article  PubMed  CAS  Google Scholar 

  12. Feldheim D, Foss C (2002) Metal nanoparticles: synthesis, characterization and applications. Marcel Dekker, New York

    Google Scholar 

  13. Zhang J, Fu Y, Lakowicz JR (2007) Enhanced Förster Resonance Energy Transfer (FRET) on a single metal particle. J Phys Chem C 111:50–56

    Article  CAS  Google Scholar 

  14. Weston KD, Carson PJ, Metiu H, Buratto SK (1998) Room-temperature fluorescence characteristics of single dye molecules adsorbed on a glass surface. J Chem Phys 109(17):7474

    Article  CAS  Google Scholar 

  15. Kramer A, Trabesinger W, Hecht B, Wild UP (2002) Optical near-field enhancement at a metal tip probed by a single fluorophores. Appl Phys Lett 80(9):1652

    Article  CAS  Google Scholar 

  16. Kühn S, Håkanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97:017402

    Article  PubMed  CAS  Google Scholar 

  17. Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films anal. Chem 70:3898–3905

    CAS  Google Scholar 

  18. Enderlein J (1999) Single-molecule fluorescence near a metal layer. Chem Phys 24:71–79

    Google Scholar 

  19. Enderlein J (2000) A theoretical investigation of single–molecule fluorescence detection on thin metallic layers. Biophys J 78:2151–2158

    Article  PubMed  CAS  Google Scholar 

  20. Bharadwaj P, Anger P, Novotny L (2007) Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology 18:044017

    Article  CAS  Google Scholar 

  21. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:11302

    Article  CAS  Google Scholar 

  22. Lakowicz JR, Malika J, Gryczynski I, Gryczynski Z, Geddes C (2003) Radiative decay engineering: the role of photonic mode density in biotechnology. J Phys D: Appl Phys 36:R240–R249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from NIH, HG-02655.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph. R. Lakowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Zhang, J. & Lakowicz, J.R. Plasmonic Enhancement of Single-Molecule Fluorescence Near a Silver Nanoparticle. J Fluoresc 17, 811–816 (2007). https://doi.org/10.1007/s10895-007-0259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0259-0

Keywords

Navigation