Skip to main content
Log in

Synthesis of Functionalized ZnSe Nanoparticles and Their Applications in the Determination of Bovine Serum Albumin

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Luminescent quantum dots (QDs)-semiconductor nanocrystals were promising alternative to organic dyes for fluorescence-based applications. In this paper, we developed procedures to use mercaptoacetic acid (MAA) to modify ZnSe nanoparticles and made the nanoparticles to be soluble for the quantitative and selective determination of bovine serum albumin (BSA). Maximum fluorescence intensity was produced at pH 7.0, with excitation and emission wavelengths at 242 and 348 nm, respectively. Under optimal conditions, the straight line equation: F = 0.38 + 0.34 C (μg/ml) was found between the relative fluorescence intensity and the concentration of BSA in the range of 9.6–124.8 μg/ml, and the limit of detection was 2 μg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao X, Cui YY, Richard ML, Leland WKC, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976. doi:10.1038/nbt994

    Article  PubMed  CAS  Google Scholar 

  2. Howarth M, Takao K, Hayashi Y, Ting AY (2005) Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci USA 102:7583–7588. doi:10.1073/pnas.0503125102

    Article  PubMed  CAS  Google Scholar 

  3. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA 103:4841–4845. doi:10.1073/pnas.0601211103

    Article  PubMed  CAS  Google Scholar 

  4. Gao XH, Yang LL, Petros JA, Marshall FF, Simons JW, Nie SM (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72. doi:10.1016/j.copbio.2004.11.003

    Article  PubMed  CAS  Google Scholar 

  5. Alivisatos AP, Gu W, Larabell C (2005) Quantom dots as cellular probes. Annu Rev Biomed Eng 7:55–76. doi:10.1146/annurev.bioeng.7.060804.100432

    Article  PubMed  CAS  Google Scholar 

  6. Ballou B, Lagerholm BC, Ernst AL, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86. doi:10.1021/bc034153y

    Article  PubMed  CAS  Google Scholar 

  7. Chang E, Miller JS, Sun JT, Yu WW, Colvin VL, Drezek R, West JL (2005) Protease-activated quantum dot probes. Biochem Biophys Res Commun 334:1317–1321. doi:10.1016/j.bbrc.2005.07.028

    Article  PubMed  CAS  Google Scholar 

  8. Giepmans BN, Deerinck TJ, Smarr BL, Jones YZ, Ellisman MH (2005) Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nat Methods 2:743–749. doi:10.1038/nmeth791

    Article  PubMed  CAS  Google Scholar 

  9. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Towards the design and implementation of surface tethered quantum dot-based nanosensors. Nat Biotechnol 21:47–51. doi:10.1038/nbt767

    Article  PubMed  CAS  Google Scholar 

  10. Murphy CJ (2002) Supporting information for “Optical Sensing with Quantum Dots”. Anal Chem 74:520 A–526 A

    Article  CAS  Google Scholar 

  11. Reiss P, Quemarda G, Carayon S, Bleuse J, Chandezon F, Pron A (2004) Luminescent ZnSe nanocrystals of high color purity. Mater Chem Phys 84:10–13. doi:10.1016/j.matchemphys.2003.11.002

    Article  CAS  Google Scholar 

  12. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732. doi:10.1016/j.biomaterials.2007.07.014

    Article  PubMed  CAS  Google Scholar 

  13. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. doi:10.1126/science.1104274

    Article  PubMed  CAS  Google Scholar 

  14. Rogach AL, Katsikas L, Kornowski A, Su DS, Eychmuller A, Weller H, Bunsenges B (1996) Synthesis and characterization of thiol-stabilized CdSe nanocrystals. Berichte der Bunsen-Gesellschaft-Physical Chemistry. 100:1772–1778

    CAS  Google Scholar 

  15. Kessler MA, Wolfbeis OS (1992) Laser-induced fluorometric determination of albumin using longwave absorbing molecular probes. Anal Biochem 200(2):254–259. doi:10.1016/0003-2697(92)90462-G

    Article  PubMed  CAS  Google Scholar 

  16. Stamler JS, Singel DL, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902. doi:10.1126/science.1281928

    Article  PubMed  CAS  Google Scholar 

  17. Ma CQ, Li KA, Tong SY (1997) Microdetermination of proteins by Rayleigh light scattering technique with acid green 25. Anal Chim Acta 338(3):255–260. doi:10.1016/S0003-2670(96)00444-8

    Article  CAS  Google Scholar 

  18. Yin YB, Wang YN, Ma JB (2006) Aggregation of two carboxylic derivatives of porphyrin and their affinity to bovine serum albumin. Spectrochim. Acta A Mol Biomol Spectrosc 64(4):1032–1038. doi:10.1016/j.saa.2005.09.012

    Article  PubMed  CAS  Google Scholar 

  19. Huang CZ, Lu W, Li YF, Huang YM (2006) On the factors affecting the enhanced resonance light scattering signals of the interactions between proteins and multiply negatively charged chromophores using water blue as an example. Anal Chim Acta 556(2):469–475. doi:10.1016/j.aca.2005.09.048

    Article  CAS  Google Scholar 

  20. Yakovleva J, Davidsson R, Bengtsson M, Laurell T, Emn’eus J (2003) Microfluidic enzyme immunosensors with immobilised protein A and G using chemiluminescence detection. Biosens Bioelectron 19:21–34. doi:10.1016/S0956-5663(03)00126-X

    Article  PubMed  CAS  Google Scholar 

  21. Zor T, Selinger Z (1996) Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 236:302–308. doi:10.1006/abio.1996.0171

    Article  PubMed  CAS  Google Scholar 

  22. Fan HH, Kashi RS, Middaugh CR (2006) Conformational lability of two molecular chaperones Hsc70 and gp96: Effects of pH and temperature. Arch Biochem Biophys 447:34–45. doi:10.1016/j.abb.2006.01.012

    Article  PubMed  CAS  Google Scholar 

  23. Meersman F, Smeller L, Heremans K (2002) A comparative FTIR study of cold-, pressure- and heat-induced unfolding and aggregation of myoglobin. Biophys J 82:2635–2644

    Article  PubMed  CAS  Google Scholar 

  24. Fitzsimons SM, Mulvihill DM, Morris ER (2007) Denaturation and aggregation processes in thermal gelation of whey proteins resolved by differential scanning calorimetry. Food Hydrocoll 21:638–644. doi:10.1016/j.foodhyd.2006.07.007

    Article  CAS  Google Scholar 

  25. Wang YP, Wei YL, Dong C (2006) Study on the interaction of 3,3-bis(4-hydroxy-1-naphthyl)-phthalide with bovine serum albumin by fluorescence spectroscopy. Photochem Photobiol A Chem 177:6–11. doi:10.1016/j.jphotochem.2005.04.040

    Article  CAS  Google Scholar 

  26. Wang F, Yang JH, Wu X, Sun CX, Liu SF, Guo CY, Jia Z (2005) The interaction mechanism and fluorescence enhancement in morin-Al3+-sodium dodecyl benzene sulfonate-protein system. Chem Phys Lett 409:14–22. doi:10.1016/j.cplett.2005.04.081

    Article  CAS  Google Scholar 

  27. Yu Y, Lai Y, Zheng XL (2007) Synthesis of functionalized CdTe/CdS QDs for spectrofluorimetric detection of BSA. Spectrochimica Acta Part A 68:1356–1361. doi:10.1016/j.saa.2007.02.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No: 20571051), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (No: J50102) and Shanghai Municipal Education Commission (No: 06AZ097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Zhang, F., Ding, Y. et al. Synthesis of Functionalized ZnSe Nanoparticles and Their Applications in the Determination of Bovine Serum Albumin. J Fluoresc 19, 437–441 (2009). https://doi.org/10.1007/s10895-008-0430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0430-2

Keywords

Navigation