Skip to main content

Advertisement

Log in

Study on the Intracellular Fate of Tat Peptide-Conjugated Quantum Dots by Spectroscopic Investigation

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The photoluminescence (PL) spectrum of water-soluble thiol-capped CdTe quantum dots (QDs) conjugated with Tat peptide in solution showed a remarkable redshift as compared to that of unconjugated QDs. After cellular uptake of the Tat-QDs conjugates, the micro-PL spectrum of Tat-QDs in lysosomes showed a spectral blueshift, which was most probably due to the fact that Tat peptide was digested by the enzymes, leaving the Tat-detached QDs in lysosomes. The reasons for the spectral changes have been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964

    Article  CAS  Google Scholar 

  2. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  CAS  PubMed  Google Scholar 

  3. Parak WJ, Pellegrino T, Plank C (2005) Labelling of cells with quantum dots. Nanotechnology 16:R9–R25

    Article  CAS  Google Scholar 

  4. Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105

    Article  CAS  PubMed  Google Scholar 

  5. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  Google Scholar 

  6. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169

    Article  CAS  Google Scholar 

  7. Lovrić J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Article  PubMed  Google Scholar 

  8. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  9. Hild WA, Breunig M, Goepferich A (2008) Quantum dots-Nano-sized probes for the exploration of cellular and intercellular targeting. Eur J Pharm Biopharm 68:153–168

    Article  CAS  PubMed  Google Scholar 

  10. Zhou M, Ghosh I (2006) Current trends in peptide science quantum dots and peptides: a bright future together. Biopolymers 88(3):325–339

    Article  Google Scholar 

  11. Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, Suzuki K, Yasuhara M, Yamamoto K (2004) Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 48:985–994

    CAS  PubMed  Google Scholar 

  12. Medintz IL, Pons T, Trammell SA, Grimes AF, English DS, Blanco-Canosa JB, Dawson PE, Mattoussi H (2008) Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. J Am Chem Soc 130:16745–16756

    Article  CAS  PubMed  Google Scholar 

  13. Walther C, Meyer K, Rennert R, Neundorf I (2008) Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjugate Chem 19:2346–2356

    Article  CAS  Google Scholar 

  14. Lindgren M, Hällbrink M, Prochiantz A, Langel Ü (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21:99–103

    Article  CAS  PubMed  Google Scholar 

  15. Kaplan IM, Wadia JS, Dowdy SF (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 102:247–253

    Article  CAS  PubMed  Google Scholar 

  16. Brooks H, Lebleu B, Vives E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57:559–577

    Article  CAS  PubMed  Google Scholar 

  17. Ruan G, Agrawal A, Marcus AI, Nie S (2007) Imaging and tracking of tat peptide-conjugated quantum dots in living cells: New insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J Am Chem Soc 129:14759–14766

    Article  CAS  PubMed  Google Scholar 

  18. Lei Y, Tang H, Yao L, Yu R, Feng M, Zou B (2008) Applications of mesenchymal stem cells labeled with tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjugate Chem 19(2):421–427

    Article  CAS  Google Scholar 

  19. Xue FL, Chen JY, Guo J, Wang CC, Yang WL, Wang PN, Lu DR (2007) Enhancement of intracellular delivery of CdTe quantum dots (QDs) to living cells by tat conjugation. J Fluoresc 17:149–154

    Article  CAS  PubMed  Google Scholar 

  20. Wang J-H, Liu T-C, Cao Y-C, Hua X-F, Wang H-Q, Zhang H-L, Li X-Q, Zhao Y-D (2007) Fluorescence resonance energy transfer between FITC and water-soluble CdSe/ZnS quantum dots. Colloids Surf A 302:168–173

    Article  CAS  Google Scholar 

  21. Liu T-C, Wang J-H, Wang H-Q, Zhang H-L, Zhang Z-H, Hua X-F, Cao Y-C, Zhao Y-D, Luo Q-M (2007) Bioconjugate recognition molecules to quantum dots as tumor probes. J Biomed Mater Res A 83(4):1209–1216

    PubMed  Google Scholar 

  22. Wang H-Q, Zhang H-L, Li X-Q, Wang J-H, Huang Z-L, Zhao Y-D (2008) Solubilization and bioconjugation of QDs and their application in cell imaging. J Biomed Mater Res A 86(3):833–841

    PubMed  Google Scholar 

  23. Dif A, Henry E, Artzner F, Baudy-Floc’h M, Schmutz M, Dahan M, Marchi-Artzner V (2008) Interaction between water-soluble peptidic CdSe/ZnS nanocrystals and membranes: formation of hybrid vesicles and condensed lamellar phases. J Am Chem Soc 130(26):8289–8296

    Article  CAS  PubMed  Google Scholar 

  24. Dwarakanath S, Bruno JG, Shastry A, Phillips T, John A, Kumar A, Stephenson LD (2004) Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem Biophys Res Commun 325:739–743

    Article  CAS  PubMed  Google Scholar 

  25. Gao X, Chan WCW, Nie S (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7(4):532–537

    Article  CAS  PubMed  Google Scholar 

  26. Anandampillai S, Zhang X, Sharma P, Lynch GC, Franchek MA, Larin KV (2008) Quantum dot-DNA interaction: computational issues and preliminary insights on use of quantum dots as biosensors. Comput Method Appl Math 197:3378–3385

    Google Scholar 

  27. Guo J, Yang W, Wang C (2005) Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions. J Phys Chem B 109(37):17467–17473

    Article  CAS  PubMed  Google Scholar 

  28. Delehanty JB, Medintz IL, Pons T, Brunel FM, Dawson PE, Mattoussi H (2006) Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjugate Chem 17:920–927

    Article  CAS  Google Scholar 

  29. Mattheakis LC, Dias JM, Choi Y-J, Gong J, Bruchez MP, Liu J, Wang E (2004) Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 327:200–208

    Article  CAS  PubMed  Google Scholar 

  30. Chen Q, Ma Q, Wan Y, Su X, Lin Z, Jin Q (2005) Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots. Luminescence 20:251–255

    Article  CAS  PubMed  Google Scholar 

  31. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    Article  CAS  Google Scholar 

  32. Smith AM, Mohs AM, Nie S (2009) Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat Nanotechnol 4:56–63

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Mi L, Xiong R, Wang P-N, Chen J-Y, Yang W, Wang C, Peng Q (2009) Subcellular localization of thiol-capped CdTe quantum dots in living cells. Nanoscale Res Lett 4:606–612

    Article  CAS  Google Scholar 

  34. Minton AP (2001) The Influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  PubMed  Google Scholar 

  35. Farrell CJ, Lee JM, Shin E-C, Cebrat M, Cole PA, Hayward SD (2004) Inhibition of Epstein-Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide. Proc Natl Acad Sci USA 101(13):4625–4630

    Article  CAS  PubMed  Google Scholar 

  36. Hotchkiss RS, McConnell KW, Bullok K, Davis CG, Chang KC, Schwulst SJ, Dunne JC, Dietz GPH, Bahr M, McDunn JE, Karl IE, Wagner TH, Cobb JP, Coopersmith CM, Piwnica-Worms D (2006) TAT-BH4 and TAT-Bcl-xL peptides protect against sepsis-induced lymphocyte apoptosis in vivo. J Immunol 176:5471–5477

    CAS  PubMed  Google Scholar 

  37. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating Peptides: a reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (10774027, 60638010) and Shanghai Educational Development Foundation (2008CG03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Mi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, R., Li, Z., Mi, L. et al. Study on the Intracellular Fate of Tat Peptide-Conjugated Quantum Dots by Spectroscopic Investigation. J Fluoresc 20, 551–556 (2010). https://doi.org/10.1007/s10895-009-0579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0579-3

Keywords

Navigation