Skip to main content
Log in

Manganese Doped Zinc Sulfide Quantum Dots for Detection of Escherichia coli

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel biocompatible chitosan passivated manganese doped zinc sulfide (Mn doped ZnS) nanophosphor has been synthesized through a simple aqueous precipitation reaction. Upon excitation with ultraviolet light, the quantum dots (QDs) emit an orange luminescence peaking at 590 nm, which is visible to the naked eye. These chitosan coated Mn doped ZnS QDs can have potential applications in bio-labeling, particularly in fluorescence-based imaging. One of the envisioned applications of these QDs is in improving the conventional, organic dye-reliant Fluorescence in situ Hybridization (FISH) technique, a widely used method for microbial detection. Here we demonstrate that the chitosan-capped Mn doped ZnS QDs are suitable for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jana NR (2011) Design and development of quantum dots and other nanoparticles based cellular imaging probe. PCCP 13:385–396

    Article  PubMed  CAS  Google Scholar 

  2. Rosenthal SJ et al (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24

    Article  PubMed  CAS  Google Scholar 

  3. Bruchez M Jr et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  PubMed  CAS  Google Scholar 

  4. Drbohlavova J et al (2009) Quantum dots—characterization, preparation and usage in biological systems. Int J Mol Sci 10:656–673

    Article  PubMed  CAS  Google Scholar 

  5. Makhal A et al (2010) Light harvesting semiconductor core-shell nanocrystals: Ultrafast charge transport dynamics of CDSE-ZNS quantum dots. J Phys Chem C 114:627–632

    Article  CAS  Google Scholar 

  6. Sen DJ et al (2010) Footsteps of nanotechnology by quantum dots with cornell dots in biological tagging, imaging and optical computing. Int J Drug Dev Res 2:164–170

    CAS  Google Scholar 

  7. Kaul Z et al (2003) Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res 13:503

    Article  PubMed  Google Scholar 

  8. Moter A, Gobel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Meth 41:85–112

    Article  CAS  Google Scholar 

  9. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  PubMed  CAS  Google Scholar 

  10. Hirschey MD et al (2006) Imaging Escherichia coli using functionalized core/shell CdSe/CdS quantum dots. J Biol Inorg Chem 11:663–669

    Article  PubMed  CAS  Google Scholar 

  11. Li W et al (2004) Exploring the mechanism of competence development in Escherichia coli using quantum dots as fluorescent probes. J Biochem Biophys Meth 58:59–66

    Article  PubMed  CAS  Google Scholar 

  12. Wu SM et al (2006) Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli. ChemPhysChem 7:1062–1067

    Article  PubMed  CAS  Google Scholar 

  13. Adachi D et al (2008) Orange electroluminescence from chemically synthesized zinc sulfide nanocrystals doped with manganese. J Non-Cryst Solids 354:2740–2743

    Article  CAS  Google Scholar 

  14. Cao J et al (2009) Optimized doping concentration of manganese in zinc sulfide nanoparticles for yellow-orange light emission. J Alloy Compd 486:890–894

    Article  CAS  Google Scholar 

  15. Tang W, Cameron DC (1996) Electroluminescent zinc sulphide devices produced by sol-gel processing. Thin Solid Films 280:221–226

    Article  CAS  Google Scholar 

  16. Dixit N et al (2009) Study of electrical and optical properties of Mn doped ZnS clusters. Mater Lett 63:2669–2671

    Article  CAS  Google Scholar 

  17. Fang X et al (2011) ZnS nanostructures: From synthesis to applications. Prog Mater Sci 56:175–287

    Article  CAS  Google Scholar 

  18. Porambo MW, Marsh AL (2009) Synthesis and photoluminescent properties of doped ZnS nanocrystals capped by poly(vinylpyrrolidone). Opt Mater 31:1631–1635

    Article  CAS  Google Scholar 

  19. Warad HC et al (2005) Luminescent nanoparticles of Mn doped ZnS passivated with sodium hexametaphosphate. Sci Technol Adv Mater 6:296–301

    Article  CAS  Google Scholar 

  20. Sugunan A et al (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340

    Article  CAS  Google Scholar 

  21. Kubota M et al (2005) Cell adsorption and selective desorption for separation of microbial cells by using chitosan-immobilized silica. Appl Environ Microbiol 71:8895–8902

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge partial financial support from the National Nanotechnology Center, belonging to the National Science & Technology Development Agency (NSTDA), Ministry of Science and Technology (MOST), Thailand and the Centre of Excellence in Nanotechnology at the Asian Institute of Technology, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baruah, S., Ortinero, C., Shipin, O.V. et al. Manganese Doped Zinc Sulfide Quantum Dots for Detection of Escherichia coli . J Fluoresc 22, 403–408 (2012). https://doi.org/10.1007/s10895-011-0973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0973-5

Keywords

Navigation