Skip to main content
Log in

Highly Sensitive Optical Biosensor for Thrombin Based on Structure Switching Aptamer-Luminescent Silica Nanoparticles

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We describe here the construction of a sensitive and selective optical sensor system for the detection of human α-thrombin. The surface functionalized luminescent [Ru(dpsphen)3]4− (dpsphen-4,7-diphenyl-1,10-phenanthroline disulfonate) ion doped silica nanoparticles (SiNPs) with a size ~70 nm have been prepared. The DABCYL (2-(4-dimethylaminophenyl)diazenyl-benzoic acid) quencher labeled thrombin binding aptamer is conjugated to the surface of SiNPs using BS3 (bis(sulfosuccinimidyl) suberate) as a cross-linker, resulting in the conformational change of aptamer to form G-quadruplex structure upon the addition of thrombin. The binding event is translated into a change in the luminescence intensity of Ru(II) complex via FRET mechanism, due to the close proximity of DABCYL quencher with SiNPs. The selective detection of thrombin using the SiNPs-aptamer system up to 4 nM is confirmed by comparing its sensitivity towards other proteins. This work demonstrates the application of simple aptamer-SiNPs conjugate as a highly sensitive system for the detection of thrombin and also it is highly sensitive towards thrombin in the presence of other proteins and complex medium such as BSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  PubMed  CAS  Google Scholar 

  2. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  PubMed  CAS  Google Scholar 

  3. Wang Y, Li J, Wang H, Jin J, Liu J, Wang K, Tan W, Yang R (2010) Silver ions-mediated conformational switch: facile design of structure-controllable nucleic acid probes. Anal Chem 82:6607–6612

    Article  PubMed  CAS  Google Scholar 

  4. Zhen SJ, Chen LQ, Xiao SJ, Li YF, Hu PP, Zhan L, Peng L, Song EQ, Huang CZ (2010) Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. Anal Chem 82:8432–8437

    Article  PubMed  CAS  Google Scholar 

  5. Zhang X, Li Y, Su H, Zhang S (2010) Highly sensitive and selective detection of Hg2+ using mismatched DNA and a molecular light switch complex in aqueous solution. Biosens Bioelectron 25:1338–1343

    Article  PubMed  CAS  Google Scholar 

  6. Choi MS, Yoon M, Baeg J-O, Kim J (2009) Label-free dual assay of DNA sequences and potassium ions using an aptamer probe and a molecular light switch complex. Chem Commun 7419–7421

  7. Heyduk E, Heyduk T (2005) Nucleic acid-based fluorescence sensors for detecting proteins. Anal Chem 77:1147–1156

    Article  PubMed  CAS  Google Scholar 

  8. Drabovich AP, Okhonin V, Berezovski M, Krylov SN (2007) Smart aptamers facilitate multi-probe affinity analysis of proteins with ultra-wide dynamic range of measured concentrations. J Am Chem Soc 129:7260–7261

    Article  PubMed  CAS  Google Scholar 

  9. He J-L, Wu Z-S, Zhang S-B, Shen G-L, Yu R-Q (2009) Novel fluorescence enhancement IgE assay using a DNA aptamer. Analyst 134:1003–1007

    Article  PubMed  CAS  Google Scholar 

  10. Chen X, Estevez M-C, Zhu Z, Huang Y-F, Chen Y, Wang L, Tan W (2009) Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem 81:7009–7014

    Article  PubMed  CAS  Google Scholar 

  11. Freeman R, Sharon E, Tel-Vered R, Willner I (2009) Supramolecular cocaine-aptamer complexes activate biocatalytic cascades. J Am Chem Soc 131:5028–5029

    Article  PubMed  CAS  Google Scholar 

  12. Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46:249–251

    Article  CAS  Google Scholar 

  13. Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9:3258–3261

    Article  PubMed  CAS  Google Scholar 

  14. Shieh Y-A, Yang S-J, Wei M-F, Shieh M-J (2010) Aptamer-Based Tumor-Targeted Drug Delivery for Photodynamic Therapy. ACS Nano 4:1433–1442

    Article  PubMed  CAS  Google Scholar 

  15. Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined ct imaging and therapy of prostate cancer. ACS Nano 4:3689–3696

    Article  PubMed  CAS  Google Scholar 

  16. Zhang S, Xia J, Li X (2008) Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au-nanoparticles. Anal Chem 80:8382–8388

    Article  PubMed  CAS  Google Scholar 

  17. Xu W, Lu Y (2010) Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence. Anal Chem 82:574–578

    Article  PubMed  CAS  Google Scholar 

  18. Yao W, Wang L, Wang H, Zhang X, Li L (2009) An aptamer-based electrochemiluminescent biosensor for ATP detection. Biosens Bioelectron 24:3269–3274

    Article  PubMed  CAS  Google Scholar 

  19. Wang J, Zhou HS (2008) Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Anal Chem 80:7174–7178

    Article  PubMed  CAS  Google Scholar 

  20. Chhabra R, Sharma J, Ke Y, Liu Y, Rinker S, Lindsay S, Yan H (2007) Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. J Am Chem Soc 129:10304–10305

    Article  PubMed  CAS  Google Scholar 

  21. Yao C, Qi Y, Zhao Y, Xiang Y, Chen Q, Fu W (2009) Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE. Biosens Bioelectron 24:2499–2503

    Article  PubMed  CAS  Google Scholar 

  22. Attia MS, Othman AM, Aboaly MM, Abdel-Mottaleb MSA (2010) Novel spectrofluorimetric method for measuring the activity of the enzyme α-l-fucosidase using the nano composite optical sensor samarium(III)-doxycycline complex doped in sol–gel matrix. Anal Chem 82:6230–6236

    Article  PubMed  CAS  Google Scholar 

  23. Shenhar R, Rotello VM (2003) Nanoparticles: scaffolds and building blocks. Acc Chem Res 36:549–561

    Article  PubMed  CAS  Google Scholar 

  24. Mulder WJM, Strijkers GJ, Van Tilborg GAF, Cormode DP, Fayad ZA, Nicolay K (2009) Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. Acc Chem Res 42:904–914

    Article  PubMed  CAS  Google Scholar 

  25. Senarath-Yapa MD, Phimphivong S, Coym JW, Wirth MJ, Aspinwall CA, Scott Saavedra S (2007) Preparation and characterization of Poly(lipid)-coated, fluorophore-doped silica nanoparticles for biolabeling and cellular imaging. Langmuir 23:12624–12633

    Article  PubMed  CAS  Google Scholar 

  26. Liu D, He X, Wang K, He C, Shi H, Jian L (2010) Biocompatible silica nanoparticles-insulin conjugates for mesenchymal stem cell adipogenic differentiation. Bioconjugate Chem 21:1673–1684

    Article  CAS  Google Scholar 

  27. Burns AA, Vider J, Ow H, Herz E, Penate-Medina O, Baumgart M, Larson SM, Wiesner U, Bradbury M (2009) Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett 9:442–448

    Article  PubMed  CAS  Google Scholar 

  28. Moulari B, Pertuit D, Pellequer Y, Lamprecht A (2008) The targeting of surface modified silica nanoparticles to inflamed tissue in experimental colitis. Biomaterials 29:4554–4560

    Article  PubMed  CAS  Google Scholar 

  29. Qhobosheane M, Santra S, Zhang P, Tan W (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274–1278

    Article  PubMed  CAS  Google Scholar 

  30. Wu YF, Chen CL, Liu SQ (2009) Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal Chem 81:1600–1607

    Article  PubMed  CAS  Google Scholar 

  31. Wang H, Yang R, Yang L, Tan W (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460

    Article  PubMed  CAS  Google Scholar 

  32. Arduini M, Mancin F, Tecilla P, Tonellato U (2007) Self-organized fluorescent nanosensors for ratiometric pb2+ detection. Langmuir 23:8632–8636

    Article  PubMed  CAS  Google Scholar 

  33. Wang S, Wang H, Jiao J, Chen K-J, Owens GE, Kamei K-I, Sun J, Sherman DJ, Behrenbruch CP, Wu H, Tseng H-R (2009) Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew Chem 121:9132–9135

    Article  Google Scholar 

  34. Wang L, Yang C, Tan W (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5:37–43

    Article  PubMed  CAS  Google Scholar 

  35. Wang L, Zhao W, O’Donoghue MB, Tan W (2007) Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjugate Chem 18:297–301

    Article  CAS  Google Scholar 

  36. Wu H, Huo Q, Varnum S, Wang J, Liu G, Nie Z, Liu J, Lin Y (2008) Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers. Analyst 133:1550–1555

    Article  PubMed  CAS  Google Scholar 

  37. Yan J, Estevez MC, Smith JE, Wang K, He X, Wang L, Tan W (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2:44–50

    Article  Google Scholar 

  38. Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78:2918–2924

    Article  PubMed  CAS  Google Scholar 

  39. Wang Y, Liu B (2009) Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 25:12787–12793

    Article  PubMed  CAS  Google Scholar 

  40. Hedges SJ, Dehoney SB, Hooper JS, Amanzadeh J, Busti AJ (2007) Evidence-based treatment recommendations for uremic bleeding. Nat Clin Pract Nephrol 3:138–153

    Article  PubMed  CAS  Google Scholar 

  41. Nishino A, Suzuki M, Ohtani H, Motohashi O, Umezawa K, Nagura H, Yoshimoto TJ (1993) Thrombin may contribute to the pathophysiology of central nervous system injury. Neurotrauma 10:167–179

    Article  CAS  Google Scholar 

  42. Serruys PW, Vranckx P, Allikmets K (2006) Clinical development of bivalirudin (Angiox®): rationale for thrombin-specific anticoagulation in percutaneous coronary intervention and acute coronary syndromes. Int J Clin Pract 60:344–350

    Article  PubMed  CAS  Google Scholar 

  43. Arai T, Miklossy J, Klegeris A, Guo JP, McGeer PLJ (2006) Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. Neuropathol Exp Neurol 65:19–25

    Article  CAS  Google Scholar 

  44. Vaughan PJ, Pike CJ, Cotman CW, Cunningham DD (1995) Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J Neurosci 15:5389–5401

    PubMed  CAS  Google Scholar 

  45. Striggow F, Riek M, Breder J, Henrich-Noack P, Reymann KG, Reiser G (2000) The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci USA 97:2264–2269

    Article  PubMed  CAS  Google Scholar 

  46. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    Article  PubMed  CAS  Google Scholar 

  47. Vairamani M, Gross ML (2003) G-quadruplex formation of thrombin-binding aptamer detected by electrospray ionization mass spectrometry. J Am Chem Soc 125:42–43

    Article  PubMed  CAS  Google Scholar 

  48. Zanarini S, Ciana LD, Marcaccio M, Marzocchi E, Paolucci F, Prodi L (2008) Electrochemistry and electrochemiluminescence of [Ru(II)-tris(bathophenanthroline-disulfonate)]4− in aprotic conditions and aqueous buffers. J Phys Chem B 112:10188–10193

    Article  PubMed  CAS  Google Scholar 

  49. Santra S, Zhang P, Wang K, Tapec R, Tan W (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993

    Article  PubMed  CAS  Google Scholar 

  50. Freeman R, Li Y, Tel-Vered R, Sharon E, Elbaz J, Willner I (2009) Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst 134:653–656

    Article  PubMed  CAS  Google Scholar 

  51. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  PubMed  CAS  Google Scholar 

  52. Wang L, Yang C, Tan W (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Latt 5:37–43

    Article  CAS  Google Scholar 

  53. Zhang D, Wu Z, Xu J, Liang J, Li J, Yang W (2010) Tuning the emission properties of Ru(phen) 2+3 doped silica nanoparticles by changing the addition time of the dye during the stober process. Langmuir 26:6657–6662

    Article  PubMed  CAS  Google Scholar 

  54. Amoroso AJ, Coogan MP, Dunne JE, Fernandez-Moreira V, Hess JB, Hayes AJ, Lloyd D, Millet C, Pope SJA, Williams C (2007) Rhenium fac tricarbonyl bisimine complexes: biologically useful fluorochromes for cell imaging applications. Chem Commun 3066–3068

  55. Wang Y, Liu B (2007) Silica nanoparticle assisted DNA assays for optical signal amplification of conjugated polymer based fluorescent sensors. Chem Commun 3553–3555

  56. Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346

    Article  PubMed  CAS  Google Scholar 

  57. Grynyov RS, Sorokin AV, Guralchuk GY, Yefimova SL, Borovoy IA, Malyukin YV (2008) Squaraine dye as an exciton trap for cyanine j-aggregates in a solution. J Phys Chem C 112:20458–20462

    Article  CAS  Google Scholar 

  58. Lakowizc JR (2006) Principles in fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  59. Wu C, Peng H, Jiang Y, McNeill J (2006) Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles. J Phys Chem B 110:14148–14154

    Article  PubMed  CAS  Google Scholar 

  60. Wu C, Szymanski C, McNeill J (2006) Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir 22:2956–2960

    Article  PubMed  CAS  Google Scholar 

  61. Zhang S, Yan Y, Bi S (2009) Design of molecular beacons as signaling probes for adenosine triphosphate detection in cancer cells based on chemiluminescence resonance energy transfer. Anal Chem 81:8695–8701

    Article  PubMed  CAS  Google Scholar 

  62. Huanga DW, Niua CG, Qina PZ, Ruana M, Zenga GM (2001) Time-resolved fluorescence aptamer-based sandwich assay for thrombin detection. Talanta 83:185–189

    Article  Google Scholar 

  63. Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131

    Article  PubMed  CAS  Google Scholar 

  64. Edwards KA, Baeumner AJ (2010) Aptamer sandwich assays: label-free and fluorescence investigations of heterogeneous binding events. Anal Bioanal Chem 398:2635–2644

    Article  PubMed  CAS  Google Scholar 

  65. Forster T, Sinanoglu O (eds) (1996) Modern quantum chemistry, Vol. 3. Academic, New York, p 93

    Google Scholar 

  66. Vu TKH, Wheaton VI, Hune DT, Charo I, Couehlin SR (1991) Domains specifying thrombin-receptor interaction. Nature 353:674–677

    Article  PubMed  CAS  Google Scholar 

  67. Corral-Rodrguez MA, Macedo-Ribeiro S, Pereira PJB, Fuentes-Prior P (2010) Leech-derived thrombin inhibitors: from structures to mechanisms to clinical applications. J Med Chem 53:3847–3861

    Article  Google Scholar 

  68. Padmanabhan K, Tulinsky A (1996) An ambiguous structure of a DNA 15-mer thrombin complex. Acta Crystallogr D52:272–282

    CAS  Google Scholar 

  69. Jin Y, Bai J, Li H (2010) Label-free protein recognition using aptamer-based fluorescence assay. Analyst 135:1731–1735

    Article  PubMed  CAS  Google Scholar 

  70. Rinker S, Ke Y, Liu Y, Chhabra R, Yan H (2008) Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol 3:418–422

    Article  PubMed  CAS  Google Scholar 

  71. Rosenholm JM, Sahlgren C, Linden M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges. Nanoscale 2:1870–1883

    Article  PubMed  CAS  Google Scholar 

  72. Latterini L, Amelia M (2009) Sensing proteins with luminescent silica nanoparticles. Langmuir 25:4767–4773

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Science and Technology, New Delhi, India. We thank Prof. S. Krishnasamy and P. Manojkumar, School of Biotechnology, Madurai Kamaraj University for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seenivasan Rajagopal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The detailed experimental scheme, SEM, EDX data and label free scheme with luminescence spectral studies in the presence of thrombin. (DOCX 1979 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, E., Mareeswaran, P.M. & Rajagopal, S. Highly Sensitive Optical Biosensor for Thrombin Based on Structure Switching Aptamer-Luminescent Silica Nanoparticles. J Fluoresc 23, 137–146 (2013). https://doi.org/10.1007/s10895-012-1127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1127-0

Keywords

Navigation