Skip to main content
Log in

Time-Resolved Flavin Adenine Dinucleotide Fluorescence Study of the Interaction Between Immobilized Glucose Oxidase and Glucose

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Time-resolved fluorescence experiments have shown that flavin adenine dinucleotide (FAD) fluorescence emission of sol–gel immobilized glucose oxidase (GOD) exhibits a three-exponential decaying behaviour characterized by long- (about 2.0–3.0 ns), intermediate- (about 300 ps) and short- (less than 10 ps) lifetime, each one being characteristic of a peculiar conformational state of the FAD structure. In the present work time-resolved fluorescence is used to monitor FAD signals in the time interval immediately following the addition of glucose at various concentrations in order to detect the conformational changes occurring during the interaction between sol–gel immobilized GOD and glucose. The analysis of time-dependent fluorescence emission signal has shown that the FAD conformational state changes during the process from a configuration with a prevalence of the state characterized by the long lifetime to a configuration with increased contribution from the process with the intermediate lifetime. The time needed to complete this configuration change decreases with the concentration of added glucose. The results here reported indicate that time-resoled fluorescence can be extremely useful for a better understanding of solid phase biocatalysis that is particularly important in light of their clinical and biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FAD:

Flavin adenine dinucleotide

GOD:

Glucose oxidase

ET:

Electron transfer

TMOS:

Tetramethoxysilane

TCSPC:

Time-correlated single-photon counting

IRF:

Instrument response function

References

  1. Steiner MS, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839

    Article  PubMed  CAS  Google Scholar 

  2. McShane MJ (2002) Potential for glucose monitoring with nanoengineered fluorescent biosensors. Diabet Technol Therap 4:533–538

    Article  Google Scholar 

  3. Brown JQ, Srivastava R, Zhu H, McShane MJ (2006) Enzymatic fluorescent microsphere glucose sensors: evaluation of response under dynamic conditions. Diabet Technol Therap 8:288–295

    Article  CAS  Google Scholar 

  4. Singh K, Singh BP, Chauhan R, Basu T (2012) Fabrication of amperometric bienzymatic glucose biosensor based on MWCNT tube and polypyrrole multilayered nanocomposite. J Appl Polym Sci 125:E235–E246

    Article  CAS  Google Scholar 

  5. Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Tech 5:1068–1076

    Google Scholar 

  6. Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565

    Article  PubMed  CAS  Google Scholar 

  7. Haouz A, Twist C, Zentz C, Tauc P, Alpert B (1998) Dynamic and structural properties of glucose oxidase enzyme. Eur Biophys J 27:19–25

    Article  PubMed  CAS  Google Scholar 

  8. Trettnak W, Wolfbeis OS (1989) Fully reversible fibre-optic glucose biosensor based on the intrinsic fluorescence of glucose oxidase. Anal Chim Acta 211:195–203

    Article  Google Scholar 

  9. Lepore M, Portaccio M, De Tommasi E, De Luca P, Bencivenga U, Maiuri P, Mita DG (2004) Glucose concentration determination by means of fluorescence emission spectra of soluble and insoluble glucose oxidase: some useful indications for optical fibre-based sensors. J Mol Catal B Enzym 31:151–158

    Article  CAS  Google Scholar 

  10. Esposito R, Della Ventura B, De Nicola S, Altucci C, Velotta R, Mita DG, Lepore M (2011) Glucose sensing based on the intrinsic time-resolved visible fluorescence of sol–gel immobilized glucose oxidase. Sensors 11:3483–3497

    Article  PubMed  CAS  Google Scholar 

  11. James TL, Edmondson DE, Husain M (1981) Glucose oxidase contains a disubstituted phosphorus residue. Phosphorus-31 nuclear magnetic resonance studies of the flavin and nonflavin phosphate residues. Biochemistry 20:617–621

    Article  PubMed  CAS  Google Scholar 

  12. Mitra C, Torstensson A (1980) Spectroscopic, NMR, and theoretical studies on the intramolecular electron transfer in FAD. J Electroanal Chem Interf Electrochem 116:749–756

    Article  Google Scholar 

  13. Wille G, Ritter M, Friedemenn R, Mäntele W, Hubner G (2003) Redox-triggered FTIR difference spectra of FAD in aqueous solution and bound to flavoproteins. Biochemistry 42:14814–14821

    Article  PubMed  CAS  Google Scholar 

  14. Fujiwara A, Mizutani Y (2008) Photoinduced electron transfer in glucose oxidase: a picosecond time-resolved ultraviolet resonance Raman study. J Raman Spectrosc 39:1600–1605

    Article  CAS  Google Scholar 

  15. Stanley R, MacFarlane A (2000) Ultrafast excited state dynamics of oxidized flavins: direct observations of quenching by purines. J Phys Chem A 104:6899–6906

    Article  CAS  Google Scholar 

  16. van den Berg P, Feenstra K, Mark A, Berendsen H, Visser A (2002) Dynamic conformations of flavin adenine dinucleotide: simulated molecular dynamics of the flavin cofactor related to the time-resolved fluorescence characteristics. J Phys Chem B 106:8858–8869

    Article  Google Scholar 

  17. Zhong D, Zewail AH (2001) Femtosecond dynamics of flavoproteins: charge separation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme. Proc Natl Acad Sci U S A 98:11867–11872

    Article  PubMed  CAS  Google Scholar 

  18. Jeronimo PCA, Araujo AN, Montenegro MCBSM (2007) Optical sensors and biosensors based on sol–gel films. Talanta 72:13–27

    Article  PubMed  CAS  Google Scholar 

  19. Wolfbeis OS, Oehme I, Papkovskaya N, Klimant I (2000) Sol–gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background. Biosens Bioelectron 15:69–76

    Article  PubMed  CAS  Google Scholar 

  20. Przybyt M, Miller E, Szreder T (2011) Thermostability of glucose oxidase in silica gel obtained by sol–gel method and in solution studied by fluorimetric method. J Photochem Photobiol B Biol 103:22–28

    Article  CAS  Google Scholar 

  21. Pierre AC (2004) The sol–gel encapsulation of enzymes. Biocatal Biotransform 22:145–170

    Article  CAS  Google Scholar 

  22. Mac Craith B, Mc Donagh C, McEvoy A, Butler T, O’Keeffe G, Murphy V (1997) Optical chemical sensors based on sol–gel materials: recent advances and critical issues. J Sol–gel Sci Technol 8:1053–1061

    Article  CAS  Google Scholar 

  23. Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol–gel derived materials. Anal Chim Acta 461:1–36

    Article  CAS  Google Scholar 

  24. Portaccio M, Lepore M, Della Ventura B, Stoilova O, Manolova N, Rashkov I, Mita DG (2009) Fiber-optic glucose biosensor based on glucose oxidase immobilised in a silica gel matrix. J Sol–gel Sci Technol 50:437–448

    Article  CAS  Google Scholar 

  25. Delfino I, Portaccio M, De Rosa M, Lepore M (2013) A preliminary investigation on the interaction between sol–gel immobilized glucose oxidase and freely diffusing glucose by means of two-photon microscopy. Proc SPIE 8588:85882U/1-12

  26. Qingwen L, Guoan L, Yiming W, Xingrong Z (2000) Immobilization of glucose oxidase in sol–gel matrix and its application to fabricate chemiluminescent glucose sensor. Mater Sci Eng C 11:67–70. doi:10.1016/S0928-4931(00)00130-2

    Article  Google Scholar 

  27. Chaudhury NK, Chandra S, Mathew TL (2001) Oncologic applications of biophotonics: prospects and problems. Appl Biochem Biotechnol 96:183–204

    Article  PubMed  CAS  Google Scholar 

  28. Gupta R, Kumar A (2008) Bioactive materials for biomedical applications using sol–gel technology. Biomed Mater 3:034005. doi:10.1088/1748-6041/3/3/034005

    Article  PubMed  Google Scholar 

  29. Delfino I, Portaccio M, Della Ventura B, Mita DG, Lepore M (2013) Enzyme distribution and secondary structure of sol–gel immobilized glucose oxidase by means of micro-attenuated total reflection FT-IR spectroscopy. Mater Sci Eng C 33:304–310. doi:10.1016/j.msec.2012.08.044

    Article  CAS  Google Scholar 

  30. Sierra JF, Galban J, Castillo JR (1997) Determination of glucose in blood based on the intrinsic fluorescence of glucose oxidase. Anal Chem 69:1471–1476

    Article  CAS  Google Scholar 

  31. De Luca P, Lepore M, Portaccio M, Esposito R, Rossi S, Bencivenga U, Mita DG (2007) Glucose determination by means of steady-state and time-course UV fluorescence in free or immobilized glucose oxidase. Sensors 7:2612–2625

    Article  Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge B. Della Ventura for his valuable contribution to experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Delfino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, R., Delfino, I. & Lepore, M. Time-Resolved Flavin Adenine Dinucleotide Fluorescence Study of the Interaction Between Immobilized Glucose Oxidase and Glucose. J Fluoresc 23, 947–955 (2013). https://doi.org/10.1007/s10895-013-1220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1220-z

Keywords

Navigation