Skip to main content
Log in

Spectroscopic Investigation, Effect of Solvent Polarity and Fluorescence Quenching of a New D-π-A Type Chalcone Derivative

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new chalcone derivative 3-(1-methyl-1H-pyrrol-2-yl)-1-naphthalen-2-yl propenone (MPNP) with electron donor-acceptor group has been synthesized and characterized by IR, 1HNMR, 13C NMR and X- ray crystallography. Electronic absorption and emission spectra of MPNP have been studied in solvents of different polarity. A remarkable red shift was observed in the emission spectrum of MPNP compared to the absorption spectrum upon increasing the solvent polarity, indicating a higher dipole moment in the excited state than in the ground state and the transition involved are π-π* with charge transfer character. Lippert-Mataga and Reichardts correlations were used to estimate the change in dipole moments (Δμ); suggest that the emissive state of MPNP is of strong ICT character. Fluorescence quantum yield (ϕf) of MPNP was correlated with empirical solvent polarity parameter ET(30), and it is observed that ϕf increases with increase in solvent polarity of polar aprotic solvents and decrease in alcoholic solvents. The interaction of MPNP with colloidal silver nanoparticles (AgNPs) was also studied in ethanol and ethylene glycol using steady state emission measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of MPNP by Ag NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. El-Daly SA, Asiri AM, Alamry KA, Khan SA (2013) Spectroscopic studies and laser activity of 3-(4-dimethylamino-phenyl)-1-(2,5-dimethyl-furan-3-yl)-propenone (DDFP): A new green laser dye. J Lumin 137:6–14

    Article  CAS  Google Scholar 

  2. Singh H, Sindhu J, Khurana JM (2014) Determination of dipole moment, solvatochromic studies andapplication as turn off fluorescence chemosensor of new3-(4-(dimethylamino) phenyl)-1-(5-methyl-1-(naphthalen-1-yl)-1H-1,2,3-triazol-4-yl) prop-2-en-1-one. Sensors Actuators B 192:536–542

    Article  CAS  Google Scholar 

  3. Rahulan KM, Balamurugan S, Meena KS, Yeap GY, Kanakam CC (2014) Synthesis and nonlinear optical absorption of novel chalcone derivative compounds. Opt Laser Technol 56:142–145

    Article  CAS  Google Scholar 

  4. Nagarajan N, Prakash A, Velmurugan G, Shakti N, Katiyar M, Venuvanalingam P, Renganathan R (2014) Synthesis, characterisation and electroluminescence behaviour of π-conjugated imidazole–isoquinoline derivatives. Dyes Pigments 102:180–188

    Article  CAS  Google Scholar 

  5. Işık D, Santato C, Barik S, Skene WG (2012) Charge-carrier transport in thin films of π-conjugated thiopheno-azomethines. Org Electron 13(12):3022–3031

    Article  Google Scholar 

  6. Mishra A, Bäuerle P (2012) Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Ed 51(9):2020–2067

    Article  CAS  Google Scholar 

  7. SunY CH, Cao D, Liu Z, Chen H, Deng Y, Fang Q (2012) Chalcone derivatives as fluorescence turn-on chemosensors for cyanide anions. J Photochem Photobiol A Chem 244:65–70

    Article  Google Scholar 

  8. Poornesh P, Shettigar S, Umesh G, Manjunatha KB, Prakash Kamath K, Sarojini BK, Narayana B (2009) Nonlinear optical studies on 1, 3-disubstituent chalcones doped polymer films. Opt Mater 31(6):854–859

    Article  CAS  Google Scholar 

  9. Rajashekara B, Sowmendranb P, Siva Sankara Sai S, Nageswara Rao G (2012) Synthesis, characterization and two-photon absorption based broadband optical limiting in diarylideneacetone derivative. J Photochem Photobiol A Chem 238:20–23

    Article  Google Scholar 

  10. Chhabra R, Sharma J, Wang H, Zou S, Lin S, Yan H, Liu Y (2009) Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nanotechnology 20(48):485201

    Article  PubMed  Google Scholar 

  11. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  PubMed  Google Scholar 

  12. Deng W, Goldys EM (2012) Plasmonic approach to enhanced fluorescence for applications in biotechnology and the life sciences. Langmuir 28(27):10152–10163

    Article  CAS  PubMed  Google Scholar 

  13. Hong B, Kang KA (2006) Biocompatible, nanogold-particle fluorescence enhancer for fluorophore mediated, optical immunosensor. Biosens Bioelectron 21(7):1333–1338

    Article  CAS  PubMed  Google Scholar 

  14. Ng MY, Liu WC (2009) Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles. Opt Express 17(7):5867–5878

    Article  CAS  PubMed  Google Scholar 

  15. Fu Y, Zhang J, Lakowicz JR (2007) Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle. J Fluoresc 17(6):811–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kalele S, Deshpande AC, Singh SB, Kulkarni SK (2008) Tuning luminescence intensity of RHO6G dye using silver nanoparticles. Bull Mater Sci 31(3):541–544

    Article  CAS  Google Scholar 

  17. Rainò G, Stöferle T, Park C, Kim HC, Topuria T, Rice PM, Mahrt RF (2011) Plasmonic nanohybrid with ultrasmall Ag nanoparticles and fluorescent dyes. ACS Nano 5(5):3536–3541

    Article  PubMed  Google Scholar 

  18. Swierczewska M, Lee S, Chen X (2011) The design and application of fluorophore–gold nanoparticle activatable probes. Phys Chem Chem Phys 13(21):9929–9941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Maxwell DJ, Taylor JR, Nie S (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124(32):9606–9612

    Article  CAS  PubMed  Google Scholar 

  20. Chung HY, Leung PT, Tsai DP (2013) Molecular fluorescence in the vicinity of a charged metallic nanoparticle. Opt Express 21(22):26483–26492

    Article  CAS  PubMed  Google Scholar 

  21. El-Daly SA, Asiri AM, Obeid AY, Khan SA, Alamry KA, Hussien MA, Al-Sehemi AG (2013) Photophysical parameters and laser activity of 3 (4-dimethylamino-phenyl)-1-(2, 5-dimethyl-thiophen-3-yl)-propenone (DDTP): A new potential laser dye. Opt Laser Technol 45:605–612

    Article  CAS  Google Scholar 

  22. Sheldrick GM (2007) A short history of SHELX. Acta Crystallogr A: Found Crystallogr 64(1):112–122

    Article  Google Scholar 

  23. Barbour LJ (2001) X-seed— a software tool for supramolecular crystallography. J Supramol Chem 1(4):189–191

    Article  CAS  Google Scholar 

  24. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  CAS  Google Scholar 

  25. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3 rd ed. Springer, New York

    Book  Google Scholar 

  26. Jana S, Dalapati S, Ghosh S, Guchhait N (2013) Excited state intramolecular charge transfer process in 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid ethyl ester and effect of acceptor functional groups. J Photochem Photobiol A Chem 261:31–40

    Article  CAS  Google Scholar 

  27. Shaikh M, Pal H (2014) Photophysics of donor–acceptor kind of styryl dyes: Involvement of twisted intramolecular charge transfer (TICT) state and the effect of solvent polarity. J Spectrosc Dyn 4:1–12

    CAS  Google Scholar 

  28. Lippert E (1957) Spectroscopic determination of the dipole moment of aromatic compounds in the first excited singlet state. Z Elektrochem 61:962–975

    CAS  Google Scholar 

  29. Mataga N, Kubota T (1970) Molecular interactions and electronic spectra. Marcel Dekker, New York, pp 371–410

    Google Scholar 

  30. Suppan P (1983) Excited-state dipole moments from absorption/fluorescence solvatochromic ratios. Chem Phys Let 94:272–275

    Article  CAS  Google Scholar 

  31. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358

    Article  CAS  Google Scholar 

  32. Ravi M, Soujanya T, Samanta A, Radhakrishnan TP (1995) Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, ENT. J Chem Soc Faraday Trans 91(17):2739–2742

    Article  Google Scholar 

  33. Coe BJ, Harris JA, Asselberghs I, Clays K, Olbrechts G, Persoons A, Hupp JT, Johnson RC, Coles SJ, Hursthouse MB, Nakatani K (2002) Quadratic nonlinear optical properties of N-Aryl stilbazolium dyes. Adv Funct Mater 12:110–116

    Article  CAS  Google Scholar 

  34. Gordon P, Gregory P (1987) Organic chemistry in colour. Chimia, Moskva

    Book  Google Scholar 

  35. Rurack K, Dekhtyar MI, Bricks JL, Resch-Genger U, Retting W (1999) Quantum yield switching of fluorescence by selectively bridging single and double bonds in chalcones: involvement of two different types of conical intersections. J Phys Chem A 103:9626–1935

    Article  CAS  Google Scholar 

  36. Birks JB (1970) Photophysics of aromatic molecules. Wiley Interscience, London, p 88

    Google Scholar 

  37. Förster T (1996). in: O. Sinanoglu (Ed.), Modern Quantum Chemistry, Academic Press, New York.

  38. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  39. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Patterns in hydrogen bonding: functionality and graph Set analysis in crystals. Angew Chem Int Ed Engl 34:1555–1573

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Center of Excellence for Advanced Materials Research and Department of Chemistry at King AbdulAziz University for providing the research facilities. One of the authors, Mehboobali Pannipara is grateful to Deanship of Graduate Studies, King Abdulaziz University for providing PhD Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samy A. El-Daly.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pannipara, M., Asiri, A.M., Alamry, K.A. et al. Spectroscopic Investigation, Effect of Solvent Polarity and Fluorescence Quenching of a New D-π-A Type Chalcone Derivative. J Fluoresc 24, 1629–1638 (2014). https://doi.org/10.1007/s10895-014-1449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1449-1

Keywords

Navigation