Skip to main content
Log in

Selective and Sensitive Fluorescent Detection of Picric Acid by New Pyrene and Anthracene Based Copper Complexes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

New pyrene and anthracene based copper complexes 4 and 7 respectively were designed, synthesized and characterized. The fluorescence behaviour of both 4 and 7 were evaluated towards nitro aromatics and anions. Both 4 and 7 possess high selectivity for the detection of well-known explosive picric acid (PA) by showing maximum fluorescence affinity. Furthermore, complex 4 showed similar sensing efficiency towards PA at different pH ranges. It was also used for real world applications, as illustrated by the very fast detection of PA from soil samples observed directly by naked eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang J-S, Swager TM (1998) Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. J Am Chem Soc 120(46):11864–11873. doi:10.1021/ja982293q

    Article  CAS  Google Scholar 

  2. Meredith DT, Lee CO (1939) A study of antiseptic compounds for the treatment of burns. J Am Pharm Assoc 28(6):369–373. doi:10.1002/jps.3080280606

    CAS  Google Scholar 

  3. Volwiler EH (1926) Medicinals and Dyes. Ind Eng Chem 18(12):1336–1337. doi:10.1021/ie50204a050

    Article  CAS  Google Scholar 

  4. Yinon J (2003) Peer reviewed: detection of explosives by electronic noses. Anal Chem 75(5):98 A–105 A0. doi:10.1021/ac0312460

    Article  Google Scholar 

  5. Hodyss R, Beauchamp JL (2005) Multidimensional detection of Nitroorganic explosives by gas chromatography-pyrolysis-ultraviolet detection. Anal Chem 77(11):3607–3610. doi:10.1021/ac050308e

    Article  CAS  PubMed  Google Scholar 

  6. Popov IA, Chen H, Kharybin ON, Nikolaev EN, Cooks RG (2005) Detection of explosives on solid surfaces by thermal desorption and ambient ion/molecule reactions. Chem Commun (15):1953–1955. doi:10.1039/b419291e

  7. Yang L, Ma L, Chen G, Liu J, Tian Z-Q (2010) Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. Chem Eur J 16(42):12683–12693. doi:10.1002/chem.201001053

    Article  CAS  PubMed  Google Scholar 

  8. Holthoff EL, Stratis-Cullum DN, Hankus ME (2011) A Nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering. Sensors 11(3):2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berg M, Bolotin J, Hofstetter TB (2007) Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase Microextraction coupled to GC/IRMS. Anal Chem 79(6):2386–2393. doi:10.1021/ac0622577

    Article  CAS  PubMed  Google Scholar 

  10. Zeng H-H, Wang K-M, R-Q Y (1994) Development of an optrode membrane for the determination of picric acid based on fluorescence energy transfer. Anal Chim Acta 298(2):271–277. doi:10.1016/0003-2670(94)00245-2

    Article  CAS  Google Scholar 

  11. Peng Y, Zhang A-J, Dong M, Wang Y-W (2011) A colorimetric and fluorescent chemosensor for the detection of an explosive-2,4,6-trinitrophenol (TNP. Chem Commun 47(15):4505–4507. doi:10.1039/c1cc10400d

    Article  CAS  Google Scholar 

  12. He G, Peng H, Liu T, Yang M, Zhang Y, Fang Y (2009) A novel picric acid film sensor via combination of the surface enrichment effect of chitosan films and the aggregation-induced emission effect of siloles. J Mater Chem 19(39):7347–7353. doi:10.1039/b906946a

    Article  CAS  Google Scholar 

  13. Gole B, Shanmugaraju S, Bar AK, Mukherjee PS (2011) Supramolecular polymer for explosives sensing: role of H-bonding in enhancement of sensitivity in the solid state. Chem Commun 47(36):10046–10048. doi:10.1039/c1cc13925h

    Article  CAS  Google Scholar 

  14. Kim D-S, Lynch VM, Nielsen KA, Johnsen C, Jeppesen JO, Sessler JL (2009) A chloride-anion insensitive colorimetric chemosensor for trinitrobenzene and picric acid. Anal Bioanal Chem 395(2):393–400. doi:10.1007/s00216-009-2819-4

    Article  CAS  PubMed  Google Scholar 

  15. Germain ME, Knapp MJ (2009) Optical explosives detection: from color changes to fluorescence turn-on. Chem Soc Rev 38(9):2543–2555. doi:10.1039/b809631g

    Article  CAS  PubMed  Google Scholar 

  16. Perez GV, Perez AL (2000) Organic acids without a carboxylic acid functional group. J Chem Educ 77(7):910. doi:10.1021/ed077p910

    Article  CAS  Google Scholar 

  17. Wyman JF, Serve MP, Hobson DW, Lee LH, Uddin DE (1992) Acute toxicity, distribution, and metabolism of 2,4,6-trinitrophenol (picric acid) in Fischer 344 rats. J Toxicol Environ Health 37(2):313–327. doi:10.1080/15287399209531672

    Article  CAS  PubMed  Google Scholar 

  18. Roy B, Bar AK, Gole B, Mukherjee PS (2013) Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive. J Org Chem 78(3):1306–1310. doi:10.1021/jo302585a

    Article  CAS  PubMed  Google Scholar 

  19. Demirel GB, Daglar B, Bayindir M (2013) Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films. Chem Commun 49(55):6140–6142. doi:10.1039/c3cc43202e

    Article  CAS  Google Scholar 

  20. Ding L, Fang Y (2010) Chemically assembled monolayers of fluorophores as chemical sensing materials. Chem Soc Rev 39(11):4258–4273. doi:10.1039/c003028g

    Article  CAS  PubMed  Google Scholar 

  21. Figueira-Duarte TM, Müllen K (2011) Pyrene-based materials for organic electronics. Chem Rev 111(11):7260–7314. doi:10.1021/cr100428a

    Article  CAS  PubMed  Google Scholar 

  22. Beyazkilic P, Yildirim A, Bayindir M (2014) Formation of Pyrene Excimers in Mesoporous Ormosil Thin Films for Visual Detection of Nitro-explosives. ACS Appl Mater Interfaces 6(7):4997–5004. doi:10.1021/am406035v

    Article  CAS  PubMed  Google Scholar 

  23. Goodpaster JV, Harrison JF, McGuffin VL (2002) Ab initio study of selective fluorescence quenching of polycyclic aromatic hydrocarbons. J Phys Chem A 106(44):10645–10654. doi:10.1021/jp021454g

    Article  CAS  Google Scholar 

  24. Wang Y, La A, Ding Y, Liu Y, Lei Y (2012) Novel signal-amplifying fluorescent nanofibers for naked-eye-based ultrasensitive detection of buried explosives and explosive vapors. Adv Funct Mater 22(17):3547–3555. doi:10.1002/adfm.201200047

    Article  CAS  Google Scholar 

  25. Liang H, Yao Z, Ge W, Qiao Y, Zhang L, Cao Z, H-C W (2016) Selective and sensitive detection of picric acid based on a water-soluble fluorescent probe. RSC Adv 6(44):38328–38331. doi:10.1039/c6ra04080b

    Article  CAS  Google Scholar 

  26. Kumar A, Pandith A, Kim H-S (2016) Pyrene-appended imidazolium probe for 2,4,6-trinitrophenol in water. Sensors Actuators B Chem 231:293–301. doi:10.1016/j.snb.2016.03.033

    Article  CAS  Google Scholar 

  27. Shanmugaraju S, Jadhav H, Karthik R, Mukherjee PS (2013) Electron rich supramolecular polymers as fluorescent sensors for nitroaromatics. RSC Adv 3(15):4940–4950. doi:10.1039/c3ra23269g

    Article  CAS  Google Scholar 

  28. Pandey R, Reddy L, Ishihara S, Dhir A, Krishnan V (2013) Conformation induced discrimination between picric acid and nitro derivatives/anions with a Cu-pyrene array: the first decision making photonic device. RSC Adv 3(44):21365–21368. doi:10.1039/c3ra44036b

    Article  CAS  Google Scholar 

  29. Shanmugaraju S, Joshi SA, Mukherjee PS (2011) Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. J Mater Chem 21(25):9130–9138. doi:10.1039/c1jm10406c

    Article  CAS  Google Scholar 

  30. Shaligram S, Wadgaonkar PP, Kharul UK (2014) Fluorescent polymeric ionic liquids for the detection of nitroaromatic explosives. J Mater Chem A 2(34):13983–13989. doi:10.1039/c4ta02766c

    Article  CAS  Google Scholar 

  31. Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103(11):4419–4476. doi:10.1021/cr010421e

    Article  PubMed  Google Scholar 

  32. Shellaiah M, Y-H W, Singh A, Ramakrishnam Raju MV, Lin H-C (2013) Novel pyrene- and anthracene-based Schiff base derivatives as Cu2+ and Fe3+ fluorescence turn-on sensors and for aggregation induced emissions. J Mater Chem A 1(4):1310–1318. doi:10.1039/c2ta00574c

    Article  CAS  Google Scholar 

  33. Ponnu A, Anslyn EV (2010) A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives. Supramol Chem 22(1):65–71. doi:10.1080/10610270903378032

    Article  CAS  Google Scholar 

  34. Guo Z, Zhu W, Shen L, Tian H (2007) A fluorophore capable of crossword puzzles and logic memory. Angew Chem 119(29):5645–5649. doi:10.1002/ange.200700526

    Article  Google Scholar 

  35. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205(1):3–40. doi:10.1016/S0010-8545(00)00246-0

    Article  CAS  Google Scholar 

  36. Wallenborg SR, Bailey CG (2000) Separation and detection of explosives on a microchip using micellar Electrokinetic chromatography and indirect laser-induced fluorescence. Anal Chem 72(8):1872–1878. doi:10.1021/ac991382y

    Article  CAS  PubMed  Google Scholar 

  37. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55(7):712 A–724 A. doi:10.1021/ac00258a001

    Google Scholar 

  38. Zhao D, Swager TM (2005) Sensory responses in solution vs solid state: a fluorescence quenching study of poly(iptycenebutadiynylene)s. Macromolecules 38(22):9377–9384. doi:10.1021/ma051584y

    Article  CAS  Google Scholar 

  39. Long Y, Chen H, Wang H, Peng Z, Yang Y, Zhang G, Li N, Liu F, Pei J (2012) Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer. Anal Chim Acta 744:82–91. doi:10.1016/j.aca.2012.07.028

    Article  CAS  PubMed  Google Scholar 

  40. Liu J, Zhong Y, Lu P, Hong Y, Lam JWY, Faisal M, Yu Y, Wong KS, Tang BZ (2010) A superamplification effect in the detection of explosives by a fluorescent hyperbranched poly(silylenephenylene) with aggregation-enhanced emission characteristics. Polym Chem 1(4):426–429. doi:10.1039/c0py00046a

    Article  CAS  Google Scholar 

  41. Li D, Liu J, Kwok RTK, Liang Z, Tang BZ, Yu J (2012) Supersensitive detection of explosives by recyclable AIE luminogen-functionalized mesoporous materials. Chem Commun 48(57):7167–7169. doi:10.1039/c2cc31890c

    Article  CAS  Google Scholar 

  42. Wang J, Mei J, Yuan W, Lu P, Qin A, Sun J, Ma Y, Tang BZ (2011) Hyperbranched polytriazoles with high molecular compressibility: aggregation-induced emission and superamplified explosive detection. J Mater Chem 21(12):4056–4059. doi:10.1039/c0jm04100a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AD and VKN acknowledges Department of Science and Technology India for INSPIRE faculty award and IIT Mandi for laboratory facilities. KLR is thankful to Ministry of Human Resource Development (MHRD), India for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhimanew Dhir or Venkata Krishnan.

Electronic supplementary material

The online version of this article (doi:10.1007/xxxxxxxx) contains supplementary material, which is available to authorized users.

ESM 1

(DOCX 3669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.L., Kumar, A.M., Dhir, A. et al. Selective and Sensitive Fluorescent Detection of Picric Acid by New Pyrene and Anthracene Based Copper Complexes. J Fluoresc 26, 2041–2046 (2016). https://doi.org/10.1007/s10895-016-1898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1898-9

Keywords

Navigation