Skip to main content
Log in

Synthesis and Luminescence Characterization of LaBO3:Dy3+ Phosphor for Stress Sensing Application

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

LaBO3:xDy3+ (x = 0.05 mol%, 0.1 mol%, 0.2 mol%, 0.5 mol%, 1 mol% and 2 mol%) phosphors were synthesized by solid-state reaction method. X-ray diffraction technique was used to confirm the formation of compound. Photoluminescence emission spectra shows two emission peaks at 470 nm and 575 nm when excitation wavelength is set at 352 nm. Photoluminescence intensity increases upto 1 mol % of Dy3+ and then starts decreasing. Dipole-dipole interaction is found to be responsible for concentration quenching of photoluminescence intensity. Commission Internationale de I’Eclairage (CIE) chromaticity diagram demonstrates that the phosphor emits in bluish white region of the visible spectrum. Critical energy transfer distance between dopant ions was determined. The mechanoluminescence characteristics were studied by the impact method. The peaks of both the mechanoluminescence (ML) intensity and the total ML intensity of the UV exposed phosphors increases with increasing impact velocity for 1 mol % concentration of Dy3+. The ML sensitivity of the LaBO3:Dy3+ (Dy3+ = 1 mol %) phosphor is comparable with the reported ML of various inorganic phosphors. The thermoluminescence characteristics of the samples were also investigated. Thermoluminescence glow peaks were recorded with 480 Gy, 80 Gy and 20 Gy dose of γ-irradiation from Co60 Source. TL trapping parameters were determined by Chen’s peak shape method and glow curve deconvolution method. LaBO3:Dy3+ phosphors were found to be good mechanoluminescent materials and can be used in stress sensing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ren M, Lin JH, Dong Y et al (1999) Structure and phase transition of GdBO3. Chem Mater 11:1576–1580

    Article  CAS  Google Scholar 

  2. Pan G, Song H, Bai X et al (2006) Novel energy-transfer route and enhanced luminescent properties in YVO4:Eu3+/YBO3:Eu3+ composite. Chem Mater 18:4526–4532

    Article  CAS  Google Scholar 

  3. Ernest M, Levin RSR, JBM (1961) Polymorphism of ABO3 type rare earth borates. Am Mineral 46:1030–1055

    Google Scholar 

  4. Chadeyron G, El-Ghozzi M, Mahiou R et al (1997) Revised structure of the orthoborate YBO3. J Solid State Chem 128:261–266

    Article  CAS  Google Scholar 

  5. Chadeyron G, Mahiou R, EL-Ghozzi M, et al (1997) Luminescence of the orthoborate YBO3:Eu3+. Relationship with crystal structure J Lumin 72–74:564–566

  6. Giesber HG, Ballato J, Pennington WT, Kolis JW (2003) Synthesis and characterization of optically nonlinear and light emitting lanthanide borates. Inf Sci (Ny) 149:61–68

    Article  Google Scholar 

  7. Hölsä J, Porcher P, Chateau C (1987) Crystal field effects in lutetium disilicates doped with Eu3+. Inorg Chim Acta 139:253–255

    Article  Google Scholar 

  8. Lin J, Sheptyakov D, Wang Y, Allenspach P (2004) Structures and phase transition of vaterite-type rare earth orthoborates: a neutron diffraction study. Chem Mater 16:2418–2424

    Article  CAS  Google Scholar 

  9. Pitscheider A, Kaindl R, Oeckler O, Huppertz H (2011) The crystal structure of П-ErBO3: new single-crystal data for an old problem. J Solid State Chem 184:149–153

    Article  CAS  Google Scholar 

  10. Thakur J, Dutta DP, Bagla H, Tyagi AK (2012) Effect of host structure and concentration on the luminescence of Eu3+ and Tb3+ in borate phosphors. J Am Ceram Soc 95:696–704

    Article  CAS  Google Scholar 

  11. Velchuri R, Kumar BV, Devi VR et al (2011) Preparation and characterization of rare earth orthoborates, LnBO3 (Ln = Tb, La, Pr, Nd, Sm, Eu, Gd, Dy, Y) and LaBO3:Gd, Tb, Eu by metathesis reaction: ESR of LaBO3:Gd and luminescence of LaBO3:Tb, Eu. Mater Res Bull 46:1219–1226

    Article  CAS  Google Scholar 

  12. Rai RK, Upadhyay AK, Kher RS, Dhoble SJ (2012) Mechanoluminescence, thermoluminescence and photoluminescence studies on Al2O3:Tb phosphors. J Lumin 132:210–214

    Article  CAS  Google Scholar 

  13. Botterman J, Eeckhout K Van Den, Baere I De, et al (2012) Mechanoluminescence in BaSi2O2N2:Eu. Acta Mater 60:5494–5500

  14. Rahimi MR, Yun GJ, Doll GL, Choi J-S (2013) Effects of persistent luminescence decay on mechanoluminescence phenomena of SrAl2O4:Eu2+, Dy3+ materials. Opt Lett 38:4134–4137

    Article  CAS  PubMed  Google Scholar 

  15. Shrivastava R, Kaur J (2015) Characterisation and mechanoluminescence studies of Sr2MgSi2O7: Eu2+, Dy3+. J Radiat Res Appl Sci 8:201–207

    Article  CAS  Google Scholar 

  16. Zhao H, Chai X, Wang X, et al (2016) Mechanoluminescence in (Sr,Ca,Ba)2SnO4:Sm3+,La3+ ceramics. J Alloys Compd 656:94–97

  17. Gi-woo K, Min-young C, Ji-sik K (2016) Frequency response analysis of mechanoluminescence in ZnS:cu for non-contact torque sensors. Sensors Actuators A Phys 240:23–30

    Article  Google Scholar 

  18. West AR (2003) Solid state chemistry and its applications. John Willey and Sons

    Google Scholar 

  19. Sajan SJ, Gopakumar N, Anjana PS, Madhukumar K (2016) Synthesis, characterization and mechanoluminescence of europium doped ZnxBa(1-x)Al2O4 (x = 0, 0.4, 0.5, 0.6, 0.8, 1.0) phosphor. J Lumin 174:11–16. doi:10.1016/j.jlumin.2016.01.024

    Article  CAS  Google Scholar 

  20. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  CAS  Google Scholar 

  21. Nair GB, Dhoble SJ (2015) Highly enterprising calcium zirconium phosphate [CaZr4(PO4)6 :Dy3+, Ce3+ ] phosphor for white light emission. RSC Adv 5:49235–49247

  22. Yang Z, Dong H, Liang X et al (2014) Preparation and fluorescence properties of color tunable phosphors Ca3Y2(Si3O9)2:Dy3+. Dalton Trans 43:11474–11477

    Article  CAS  PubMed  Google Scholar 

  23. Dutta S, Som S, Sharma SK (2013) Luminescence and photometric characterization of K(+) compensated CaMoO4:Dy(3+) nanophosphors. Dalton Trans 9654–9661

  24. Blasse G (1968) Energy transfer in oxidic phosphors. Phys Lett A 28:444–445

    Article  CAS  Google Scholar 

  25. Dexter DL, Schulman JH (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063

    Article  CAS  Google Scholar 

  26. Geng W, Zhu G, Shi Y, Wang Y (2014) Luminescent characteristics of Dy3+ doped calcium zirconium phosphate CaZr4(PO4)6(CZP) phosphor for warm-white LEDs. J Lumin 155:205–209

    Article  CAS  Google Scholar 

  27. Chandra VK, Chandra BP (2011) Suitable materials for elastico mechanoluminescence-based stress sensors. Opt Mater (Amst) 34:45–58

    Article  Google Scholar 

  28. Dutta S, Som S, Priya J, Sharma SK (2013) Band gap, CIE and trap depth parameters of rare earth molybdate phosphors for optoelectronic applications. Solid State Sci 18:114–122

    Article  CAS  Google Scholar 

  29. Chen R (1969) Glow curves with general order kinetics. J Electrochem Soc 116:1254–1257

    Article  Google Scholar 

  30. Kitis G, Gomez-Ros JM, Tuyn JWN (1998) Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J Phys D Appl Phys 31:2636–2641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Smt.Renu Nayar is thankful to UGC for awarding Minor Research Project, approval Letter No. and Date: No F:No MS-133/201002/XII/14-15/CRO-97 dated 7-7-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Dhoble.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayar, R., Tamboli, S., Sahu, A.K. et al. Synthesis and Luminescence Characterization of LaBO3:Dy3+ Phosphor for Stress Sensing Application. J Fluoresc 27, 251–261 (2017). https://doi.org/10.1007/s10895-016-1952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1952-7

Keywords

Navigation